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Abstract— In this paper we extend the concept of explorabil-
ity of noisy scalar fields to turbulent scalar fields. Since
turbulent fields are prone to sporadic measurement, we use
expected value of rate of measurements to estimate the rate
of measurement at a location and use this estimate to define
explorability of a turbulent scalar field. We define the notion
of coherent steps in a turbulent field and prove that if the
turbulent field is locally explorable the step taken by the robot
will be coherent. We also present a method to compute the
Cumulative Distribution Function of the error in estimation
of rate of measurement and then show that the probability
of a coherent step is inversely proportional to the variance in
estimation error if the error has Gaussian distribution.

I. INTRODUCTION

Mobile agents moving in space often encounter scalar or
vector fields in their path. A scalar or vector field such as
chemical plume, temperature, light intensity etc is generated
by a source such as a chemical substance, a fire, or a light
source respectively. The field generated by a source can be
smooth or turbulent. The smooth fields are characterized by
smooth local gradients whereas gradient of a turbulent field
is not well defined. In this paper we study the turbulent
fields because most of the practical problems or applications
in engineering and biology encounter turbulent fields [1].
For example, an underwater vehicle in shallow depths will
encounter turbulent flow of water, a robot near an active
volcano will encounter turbulent heat waves and a moth will
encounter a turbulent chemical plume set up by a mating
partner.

A robot carrying sensors for measurement (or detection)
can move in an area to measure the value of the field at
different locations. The trajectory of the robot is designed
depending upon the need of the user or researcher. For
example, if a robot has been deployed for surveillance then
the trajectory of the robot is designed for the exploration
of the field [2]–[5], if a robot is deployed for target search
then the trajectory of the robot is designed for localizing
the source of the measurement using gradient ascent/descent
techniques [6]–[11] in case of smooth fields or gradient-
free methods [12]–[15] for the case of turbulent fields. Most
of the research work in this field is focused on designing
strategies to either explore the field efficiently or search the
source under some constraints. However, in this paper we
aim to investigate how difficult is it to explore a turbulent
scalar field.
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For any application, we would like the measurement to
be consistent with the true field. In other words, if the
true field increases from location A to location B then the
value of measurement at B should be more than the value
of measurement at A and vice versa. This need of the
consistency of measurement with the true field leads us to
the notion of explorability of a field. In [16] the concept
of explorability of a noisy scalar field was introduced. It
was shown that the probability of a false walk (inconsistent
measurement w.r.t. true field) is less than 0.5 if the field
is locally explorable. In [17] the concept of explorability
was extended to Gaussian scalar fields and source seeking
behavior of the robots was analyzed by the definition of
coherent and incoherent steps. Since, the turbulent fields are
prone to sporadic measurements, the concept of explorability
can not be borrowed in its original form [16], [17] to
turbulent fields.

In this paper, we extend the concept of explorability to
turbulent fields using a framework described in [14] for
source seeking in turbulent field. Since the measurements
in the turbulent field are sporadic, the value of measurement
collected by a robot is often zero or not acceptable. Thus, we
compute expected value of rate of measurement using current
information collected about the source and use it as an
estimate of the rate of measurement at a location. Using the
expected value of rate of measurement, we extent the notion
of explorability to the turbulent scalar fields. We define
the concept of coherent steps and establish the relationship
between explorability of a field and coherent steps taken
by a robot in the field. We propose a method to estimate
the cumulative density function of the error in estimation
of the rate of measurement and we use this technique to
establish that the probability of making coherent steps is
inversely proportional to the variance of the distribution of
estimation error under the assumption that the estimation
error is a Gaussian random variable. Finally we demonstrate
using simulation techniques that the speed to converging to a
source is directly proportional on the amount of information
collected about the source which in turn potentially suggests
that the probability of making coherent steps is inversely
proportional to the variance in the error of estimation of rate
of measurement.

The outline of the paper is as follows: we present the
models used for motion, measurement and information in
section II. The concept of explorability is presented in section
III. In section IV we present the concept of coherent steps
and establish the relationship between coherent steps and
explorability of a turbulent field. A method of estimation
of CDF of error in estimation of rate of measurement is
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presented in section V and using this estimation technique
we find a relationship between probability of a coherent
step and variance of the error in estimation. In section
VI we present the simulation results to demonstrate the
aforementioned relationship and finally in section VI we
present the conclusion and future work.

II. MOTION, SENSING AND INFORMATION IN A
TURBULENT FIELD

In this section we present the models used in [14] for
a robot in a turbulent field. Suppose a robot is moving in
a 2D space and collecting measurements of the field along
its trajectory. We discretize the search space into uniform
grids (see Fig. 1b). Let each grid point be denoted by hi;
i = 1, 2, ..., N where N is the total number of grid points.
Let the unknown source location be represented by a random
variable θ ∈ R2. Let the robot’s location be represented by
the parameter x ∈ R2 and the measurement taken by the
robot be represented by another random variable Z ∈ R.

The robot uses a motion model to move in the discretized
space. At every location the robot stops for a fixed amount
of time ∆t to collect the measurement and update its
information about the source. Then the robot uses the current
information about the source to move to a next location using
the control input generated by a source seeking algorithm.

A. Motion model

The motion dynamics of the robot is given by a particle
model as follows:

xk+1 = xk + uk (1)

Here xk, uk and xk+1 are the robot’s current location, control
input and robot’s next location respectively.

B. Measurement model

1) Hits: In order to reduce the effect of the sporadic
measurements in the study of turbulent fields, the concept
of hits is introduced. A hit is defined as the detection of the
field by the sensor. A hit is observed when the value of the
field is above the detection threshold of the sensor (Fig. 1a).

2) Rate of hits: The rate of hits is the number of hits per
unit time encountered by the robot at a location. Rate of hits
is a function of the source and robot locations, hence it is a
random variable. We assume that a deterministic function of
rate of hits is available for the given type of the field. For
example, Vergasolla et al. in [18], derived a deterministic
function of rate of hits for the case of plume particles in
turbulent field.

C. Information model

The random variable θ has a probability distribution p(θ)
which denotes the probability of source being at location
θ = θ. At the start of the trajectory of the robot, we
initialize this distribution by a uniform distribution since we
have no information about the source. At t = k, given the
measurement zk collected by the robot at xk, we should be
able to update p(θ). In order to be able to do that we will
have to make the following assumptions.

Assumption 2.1: Current measurement is dependent only
on the current location of the robot and the source location
and is independent of its trajectory and the corresponding
measurements made along the trajectory.

p(zk|θ, z1:k−1, x1:k) = p(zk|θ, xk) (2)
Assumption 2.2: The probability distribution of the source

location is independent of future robot location until the
measurement is observed i.e.

p(θ|z1:k−1, x1:k) = p(θ|z1:k−1, x1:k−1) (3)
Assumption 2.3: The number of hits encountered by a

robot at a location is Poisson distributed and is independent
of the number of hits encountered by it at any other location.

(a) Field & sensor threshold

(b) 2D discretized search space
with source and robot

Fig. 1: Sensor reading in turbulent field and search space

Using the above assumptions, we present the different
notions of probability distribution of source location as
derived in [14].

1) Posterior distribution of source location: The posterior
distribution of the source location p(θ|z1:k, x1:k) is the
current estimate of the source location given the current
trajectory and the measurement collected along the trajectory.
Posterior probability distribution can be computed as follows:

p+k (θ) = p(θ|z1:k, x1:k) (4)

=
p(θ|z1:k−1, x1:k−1) exp(−R(θ, xk)∆t)R(θ, xk)zk∫
p(θ|z1:k−1, x1:k−1) exp(−R(θ, xk)∆t)R(θ, xk)zkdθ

2) A priori distribution of the source location: At t =
k, the a priori distribution p−k+1(θ) is an estimate of the
probability distribution of source location if the robot moves
to (x̂ = xk +uk) and might receive ẑk+1 measurement after
waiting for ∆t. Given, the posterior distribution p+k (θ), from
(4), the a priori distribution can be computed as follows:

p−k+1(θ) = p(θ|ẑk+1, z1:k, x̂, x1:k) (5)

=
p+k (θ) exp(−R(θ, x̂)∆t)R(θ, x̂)ẑk+1∫
p+k (θ) exp(−R(θ, x̂)∆t)R(θ, x̂)ẑk+1dy
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3) Probability distribution of measurement: By assump-
tion 2.3 we know that the number of hits are Poisson
distributed. Now, given R

+

k (x̂) =
∫
p+k (θ)R(θ, x̂)dθ which

is the expected value of rate of hits at location (x̂ = xk+uk)

and the Poisson parameter ∆tR
+

k (x̂). Probability distribution
of measurement can be computed as follows:

p(ẑk+1|x̂) =
exp(−R+

k (x̂)∆t)(R
+

k (x̂))ẑk+1

ẑk+1!
(6)

III. EXPLORABILITY OF A TURBULENT SCALAR FIELD

Since the measurements are available only in sporadic
manner in a turbulent field therefore we use a probabilistic
estimate of the rate of hits called predicted rate of hits as a
measurement of the field .

A. Predicted rate of hits
Given the framework described in section II, the pre-

dicted rate of hits R
−
k+1(x̂) at a next possible robot lo-

cation x̂ = (xk + uk) can be defined as the expected
value of R(θ, x̂) with respect to the probability distribution
p(θ, ẑk+1|x̂, z1:k, x1:k).

R
−
k+1(x̂) =

∫ ∫
p(θ, ẑk+1|x̂, z1:k, x1:k)R(θ, x̂)dz dθ (7)

=

∫ ∫
p(ẑk+1|x̂, z1:k, x1:k)p−k+1(θ)R(θ, x̂)dz dθ (8)

Since the posterior distribution reflects the current informa-
tion gathered by the robot about the source. It has certain
divergence from the true distribution. This leads to an error
in the estimate of the true rate of hits at a location.

Assumption 3.1: Let at time t = k the posterior distribu-
tion of source location be given by p+k (θ) and the predicted
rate of hits at location x̂ = xk+uk be given as R

−
k+1(x̂). Let

the true source location be given by θ∗, then the predicted
rate of hits is an estimate of the true rate of hits such that

R
−
k+1(x̂) = R(θ∗, x̂) + Λx̂ (9)

where Λx̂ is a random variable which denotes estimation
error.

The distribution of estimation error described in the above
assumption depends on the divergence of the posterior from
the true distribution. We will use this argument in section
VI to show the relationship between variance in the error of
estimation and probability of making coherent steps. Now
in the next subsection we define explorability of a turbulent
scalar field.

B. Explorability
Let at time t = k the current location of the robot be

x0 = xk and n be an arbitrary vector of small norm. We
can say that x = x0 + n is a location in the neighborhood
of x0. Let ε > 0 and 0 < p < 1 be two positive scalars and
θ∗ be the true location of the source. Let us define three sets
around the location x0:

U+(ε) = {x|R(θ∗, x)−R(θ∗, x0) ≥ ε} (10)
U−(ε) = {x|R(θ∗, x)−R(θ∗, x0) ≤ −ε} (11)

U0(ε) = {x| |R(θ∗, x)−R(θ∗, x0)| < ε} (12)

A turbulent scalar field is said to be (p, ε) explorable at x0
if one of the following conditions are satisfied:

If x ∈ U+(ε), then

Pr
(
R
−
k+1(x)−R−k+1(x0) ≥ ε

)
>

1 + p
2

(13)

If x ∈ U−(ε), then

Pr
(
R
−
k+1(x)−R−k+1(x0) ≤ −ε

)
>

1 + p
2

(14)

If x ∈ U0(ε), then

Pr (|R−k+1(x)−R−k+1(x0) |< ε) >
1 + p

2
(15)

IV. COHERENT STEPS IN A TURBULENT FIELD

In this section we extend the concept of coherent steps to
turbulent scalar fields. We also show that if the field is locally
explorable then the step made by the robot is coherent.

A. Coherent steps

The coherent steps of a robot in a turbulent field refers
to a step made by the robot from location A to B when the
estimate of the rate of hits (predicted rate of hits) at A and
B are consistent with the actual rate of hits.

Definition 4.1: Let at time t = k, the current location of
the search robot be x0 = xk and the posterior probability
distribution of source location be p+k (θ). Let Γx0

be a random
variable given by Γx0

= Λx−Λx0
and x be a location in the

neighborhood of x0 such that x = x0 +uk for some uk then
the step of the robot to x is coherent if one of the following
conditions are satisfied:

If x ∈ U+(ε) ∪ U−(ε), then

Pr
(
|Γx0 | ≤

∣∣R(θ∗, x)−R(θ∗, x0)
∣∣− ε) > 1 + p

2
(16)

If x ∈ U0(ε), then

Pr
(
|Γx0 | < ε−

∣∣R(θ∗, x)−R(θ∗, x0)
∣∣) > 1 + p

2
(17)

B. Coherent steps in explorable turbulent field

For efficient source seeking we would like the robot to
make as many coherent steps as possible. If the steps made
by the robot are not coherent then the number of steps taken
by the robot to localize the source will increase. As we have
seen, the estimation of the rate of hits has error given by the
value of Λ. Now we show that a robot in a explorable field
will always generate coherent steps.

Theorem 4.1: Let at time t = k, the current location of
the search robot be x0 = xk and the posterior probability
distribution of source location be p+k (θ). Let x = x0 + uk
be a step of the robot such that x is in the neighborhood of
x0. Now, if the turbulent scalar field is (p, ε) explorable at
x0 then the step taken by the robot is coherent.

Proof: Since x can be in any of the three sets defined
in (13), (14) and (15) therefore we will take each case one
by one and prove the theorem for each of them.
Case 1: x ∈ U+(ε)
Since, the turbulent scalar field is (p, ε) explorable at x0
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therefore using the definition of explorability of a turbulent
scalar field in (13) we have:

Pr
(
R
−
k+1(x)−R−k+1(x0) ≥ ε

)
>

1 + p
2

Using (9) we can say that

Pr
(
R(θ∗, x) + Λx −R(θ∗, x0)− Λx0 ≥ ε

)
>

1 + p
2

We know that Γx0
= Λx − Λx0

, therefore we have:

Pr
(
R(θ∗, x)−R(θ∗, x0) + Γx0

≥ ε)
)
>

1 + p
2

Rearranging the terms we get

Pr
(

Γx0 ≥ −
((
R(θ∗, x)−R(θ∗, x0)

)
− ε
))

>
1 + p

2

Using, (13), we know that R(θ∗, x)−R(θ∗, x0) > 0 thus, the
above equation satisfies the following equation for Γx0

< 0:

Pr
(
|Γx0
| ≤

∣∣R(θ∗, x)−R(θ∗, x0)
∣∣− ε) > 1 + p

2
Using (16), we can say that the step taken by the robot is
coherent.

Case 2: x ∈ U−(ε)
Again, using (13) and (9) and the definition of Γx0

we have:

Pr
(
R(θ∗, x)−R(θ∗, x0) + Γx0

≤ −ε)
)
>

1 + p
2

Rearranging the terms we get

Pr
(
Γx0
≤ R(θ∗, x0)−R(θ∗, x)− ε

)
>

1 + p
2

Using, (14), we know that R(θ∗, x0)−R(θ∗, x) > 0 thus, the
above equation satisfies the following equation for Γx0

> 0:

Pr
(
|Γx0 | ≤

∣∣R(θ∗, x)−R(θ∗, x0)
∣∣− ε) > 1 + p

2
Using (16), we can say that the step taken by the robot is
coherent.

Case 3: x ∈ U0(ε)
Using (13) we have

Pr
(∣∣∣R−k+1(x)−R−k+1(x0)

∣∣∣ < ε

)
>

1 + p
2

First we let R
−
k+1(x)−R−k+1(x0) > 0, then we have

Pr
(
R
−
k+1(x)−R−k+1(x0) < ε

)
>

1 + p
2

Now using (9) and the definition of Γx0
we have:

Pr
(

Γx0 < ε−
(
R(y∗, x)−R(y∗, x0)

))
>

1 + p
2

(18)

Now we let R
−
k+1(x)−R−k+1(x0) < 0, then we have

Pr
(
−
(
R
−
k+1(x)−R−k+1(x0)

)
< ε

)
>

1 + p
2

Now using (9) and the definition of Γx0
we have:

Pr
(

Γx0
> −

(
ε−

(
R(y∗, x0)−R(y∗, x)

)))
>

1 + p
2

(19)
Now, comparing the results of (18) and (19) with (17) we
can say that the step taken by the robot is coherent.

V. ANALYSIS OF ERROR DISTRIBUTION

In this section we try to compute the probability of the
error Γx0

being bounded by computing its cumulative density
function (CDF). Let at time t = k, the robot be at x0 = xk
and the posterior distribution be p+k (θ) = p(θ|z1:k, x1:k). Let
x be one of the possible next steps of the robot. Then using
Assumption 3.1, for any location x in the search space we
can say that:

R−k+1(x) = R(θ∗, x) + Λx (20)

Let us consider that the true location of the source is θ∗

and the current location of the robot is x0 then the true rate
of hits at the current location of the robot can be given by
R(θ∗, x0). The true distribution of the source location can be
given as a delta distribution T (θ) which can be approximated
using a Gaussian distribution with small variance.

Assumption 5.1: The true distribution of source location
can be given as:

T (θ) ∼ N (0, ε2) ; ε2 � 1 (21)

Now using (8), (20) and Assumption 5.1, we have:∫∫
p(θ, ẑk+1|x, z1:k, x1:k)R(θ, x)dzdθ

=

∫
T (θ)R(θ, x)dθ + Λx (22)

After rearranging the integrals we have:

Λx =

∫ (∫
p(θ, ẑk+1|x, z1:k, x1:k)dz − T (θ)

)
R(θ, x)dθ

(23)
Let for simplicity the condition {z1:k, x1:k} be given by
the condition {A}. Now, the distribution p(θ, ẑk+1|x,A) =
p(θ, ẑk+1|x, z1:k, x1:k) can be obtained as follows:

p(θ, ẑk+1|x,A) = p(θ|ẑk+1, x,A)p(ẑk+1|x,A)

=
p(ẑk+1|θ, x,A)p(θ|x,A)

p(ẑk+1|x,A)
p(ẑk+1|x,A)

= p(ẑk+1|θ, x,A)p(θ|x,A) (24)

Using Assumption 2.2, we can say that p(θ|x,A) = p+k (θ),
thus the above equation becomes:

p(θ, ẑk+1|x,A) = (ẑk+1|θ, x,A)p+k (θ) (25)

Using (23) and (25), we have

Λx =

∫ (∫
p(ẑk+1|θ, x,A)p+k (θ)dz − T (θ)

)
R(θ, x)dθ

=

∫ (∫
p(ẑk+1|θ, x,A)dz − T (θ)

p+k (θ)

)
p+k (θ)R(θ, x)dθ

(26)
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Using Assumption 2.3, we can say that∫
p(ẑk+1|θ, x,A)dz = ∆tR(θ, x). Using this we have

Λx =

∫ (
∆tR(θ, x)− T (θ)

p+k (θ)

)
p+k (θ)R(θ, x)dθ

Λx = ∆t

∫ (
R2(θ, x)p+k (θ)− 1

∆t
R(θ, x)T (θ)

)
dθ (27)

Using the above equation, we can say that:

Λx = ∆t

(
Ep+k (θ)

[
R2(θ, x)

]
− 1

∆t
ET (θ)

[
R(θ, x)

])
(28)

We know that Γx0
= Λx − Λx0

, using (28) we have:

Γx0 = ∆t

(
Ep+k (θ)

[
R2(θ, x)−R2(θ, x0)

]
− 1

∆t
ET (θ)

[
R(θ, x)−R(θ, x0)

])
(29)

We introduce the function π(ε):

π(ε) =

{ ∣∣R(θ∗, x)−R(θ∗, x0)
∣∣− ε ;x ∈ U+(ε) ∪ U−(ε)

ε−
∣∣R(θ∗, x)−R(θ∗, x0)

∣∣ ;x ∈ U0(ε)

(30)
Now, using (29) we have:

Pr
(
|Γx0
| ≤ π(ε)

)
= Pr

(∣∣∣∣Ep+k (θ)

[
R2(θ, x)−R2(θ, x0)

]
− 1

∆t
ET (θ)

[
R(θ, x)−R(θ, x0)

] ∣∣∣∣ ≤ π(ε)

∆t

)
(31)

We can see that finding the CDF of the estimation error is
a challenging problem if the only knowledge we have is the
trajectory and the corresponding measurement obtained by
the robot. In order to simplify the problem we make further
assumptions about the noise in estimation of rate of hits.

Assumption 5.2: Let the error in estimation of the rate of
hits at a location x′ through predicted rate of hits R−k+1(x′)
be a zero mean Gaussian random variable with variance σ2

x′ .

R−k+1(x′) = R(θ∗, x′) + Λx′ ; Λx′ ∼ N (0, σ2
x′) (32)

Theorem 5.1: Let at time t = k, a robot be at location
xk = x0 such that that posterior distribution of source
location be p+k (θ). Let x = x0 + uk be a step of the robot
such that x is in the neighborhood of x0. Let the assumptions
3.1 and 5.2 hold such that variance at x0 and x be σ2

x0
and σ2

x

respectively. Now, the probability of step taken by the robot
being coherent is inveresely proportional to

√
σ2
x + σ2

x0
.

Proof: Since Λx0 and Λx are zero mean Gaussian
random variables with variance σ2

x0
and σ2

x respectively
therefore Γx0

= Λx − Λx0
is also a normally distributed

random variable with zero mean and variance
√
σ2
x + σ2

x0
.

Now, the cumulative probability distribution of random vari-
able Γx0

can be given as:

Pr
(
Γx0 ≤ π(ε)

)
=

1

2

1 + erf

(
π(ε)√

2(σ2
x + σ2

x0
)

) (33)

Using the above CDF, we have:

Pr
(
|Γx0
| ≤ π(ε)

)
= erf

(
π(ε)√

2(σ2
x + σ2

x0
)

)
(34)

Now using (16), (17) and (34) we can see that probability
of x being a coherent step is inveresely proportional to√
σ2
x + σ2

x0
.

Remark 5.1: Since explorability guarantees coherent
steps, using (16), (17) and (34) we can say that the explorable
probability p is inversely proportional to the variance of
estimation error. If p is large then the variance of the
estimation error is small and vice versa.
From (34), it is apparent that the variance of the random
variable Λ is dependent on the current information about the
source location. As mentioned before, the amount of current
information on the source can be realized if we know the
divergence between the true distribution and the posterior
distribution of the source location. Since it is not possible
to compute the divergence (because the source location is
unknown), we resort to numerical simulation to show that
if we gather more information about the source then we are
more probable to make coherent steps.

VI. SIMULATION RESULTS

As stated before, the variance of the random variable Λ
around value zero is inversely proportional to the information
gained about the source by the robot. This in turn means the
lesser the divergence between the posterior and the true field
the lesser the variance of random variable Λ.

Remark 6.1: If a robot collects more measurement in the
space at various locations then the variance of Λ around zero
value decreases and hence using Theorem 5.1 the probability
of making coherent steps increases.
We show the validity of Remark 6.1 using simulations
results. We deploy a group of robots in the search space
to localize a source using expected rate algorithm [14]. Each
robot, at every step, shares the measurement and location
with all other robots if it receives a non-zero measurement.
In this way each robot has more information about the source
compared to the case if it was trying to localize the source
alone. If we show that the group can localize the source
in less number of steps than any single agent then we can
demonstrate the validity of Remark 6.1.

We simulate a 2D search space with a plume source which
generates a turbulent field and we discretize the search space
into grids of equal sizes. The source is represented by a red
asterisk (on top). The plume particles emitted by the source
have a diffusivity of 1 and a mean life of 2500 seconds.
The wind is blowing with a speed of 1m/s in the negative
y-axis direction. The robot stops at every grid point in its
trajectory for 5 seconds to collect the measurement. We
deploy three robots in a search space to localize a source
of plume generating turbulent plume field. The robots first
search in a group by sharing their measurement and location
(if measurement greater than zero). The starting point of
each robot is represented by a black asterisk (at bottom) and
the path of the robots is shown in Figure 2. In the second
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Fig. 2: Multiple agents localizing the source in a team

(a) Agent 1 (b) Agent 3

(c) Agent 3

Fig. 3: Single agents localizing the source

round the robots were deployed individually with exactly
same initial positions. The starting point of each robot is
represented by a blue asterisk (at bottom) and the path of
each robot is shown in Figure 3. The number of steps taken
by Agent 1, 2 and 3 were 570, 731 and 597 respectively.
However, the number of steps taken by the agents when
working in a team was 284. We can clearly observe that the
number of steps taken by agents when working in a team is
significantly less than individual robots working alone. This
indicates that the estimate of the rate of hits (cost function
for source seeking) in case of agents working in a team was
better than the cases when the robots worked individually.
Hence, it reinstates our claim that the probability of coherent
steps is inversely proportional to the variance of the error in
estimation of rate of hits.

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended the notion of explorabilty of
noisy scalar fields to turbulent scalar fields. We define the

coherent steps of a robot in a turbulent field and derived
the bounds on the error to ensure coherent steps with
high probability. We also proved that the variance of error
in estimation around zero is inversely proportional to the
probability of making coherent steps and demonstrated the
same using simulation results. In future we would like to
prove the convergence of source seeking algorithms in the
turbulent field using the notion of explorabiltiy.
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