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Abstract— Online parameter identification of advection-
diffusion processes is performed using a mobile sensor network.
A constrained cooperative Kalman filter is developed to provide
estimates of the field values and gradients along the trajectories
of the mobile sensor network so that the temporal variations of
the field values can be estimated. Utilizing the state estimates
from the constrained cooperative Kalman filter, a recursive least
square (RLS) algorithm is designed to estimate the unknown
parameters of the advection-diffusion process. We provide bias
analysis of the RLS in the paper. In addition to validating the
proposed algorithm in simulated advection-diffusion fields, we
build a controllable CO2 advection-diffusion field in a lab and
design a sensor grid that collects the field concentration over
time to allow the validation of the proposed algorithm in the
CO2 field. Experimental results demonstrate robustness of the
algorithm under realistic uncertainties and disturbances.

I. INTRODUCTION

Many complicated spatio-temporal processes have been
observed in diverse fields including physical, chemical, and
biological systems [1]. These spatio-temporal processes are
often viewed as distributed parameter systems (DPSs), which
are mathematically described by partial differential equations
(PDEs) in model-based schemes. In many practical problems,
the parameters of PDEs such as the diffusion coefficient may
be unknown or inaccurate. Therefore, to better understand
the processes, there is a need to use parameter identification
methods to refine, update, or estimate these unknown param-
eters [2], [3]. On the other hand, the procedure of parameter
identification will also provide important insights into the
analysis, design, and control of DPSs under study. Many
identified models have been used in applications [4].

Various aspects of parameter identification of DPSs have
been investigated in [5]–[7] and references therein. The
identification of PDEs from discrete samples can be done at
least in two ways: indirect method [7] and direct method [2],
[8]. A typical indirect method is based on a weak formulation
using a Galerkin-like finite element procedure [7]. The most
attractive feature of the indirect method is its flexibility to
deal with PDEs with arbitrary initial conditions and complex
geometric boundaries. In a direct method, the spatio-temporal
variables are usually discretized with respect to both time
and space. Derivatives of the functions at each discretization
node have to be approximated using some standard finite
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difference approximations such as finite difference and finite
volume method [2], [8]. The direct method can be readily
used in all kinds of PDEs and maintain a straightforward
link to the physical properties of the original DPS system.

Many of these studies require large numbers of static
sensors to collect data in the whole domain. Due to the
limited number of actuators and sensors in practical sensing,
in a very large and complex field, it is preferable to employ
mobile sensor networks (MSNs), which consist of groups of
robotic agents with computational, communication, sensing,
and locomotive capabilities [9]–[11], to perform parameter
identification. Although there exist some contributions on the
issue of parameter identification of PDEs using mobile sensor
networks [3], [12], [13], most of these studies are based on an
offline scheme and require high computational loads with few
exceptions that investigate the online parameter identification
[2], [14], [15]. There are a number of difficulties inherent in
the online parameter identification of PDEs. First, it is a
challenging inverse problem, which requires the identifica-
tion of system parameters from collected finite-dimensional
measurements. Second, online parameter identification using
a mobile sensor network requires a combination of cooper-
ative control and cooperative sensing.

In our previous work [2], we designed a cooperative
filtering scheme for online parameter estimation of diffusion
processes using four sensing agents arranged in a symmetric
formation. The scheme consists of two parts: a cooperative
Kalman filter and a recursive least square (RLS) estimator.
We proved the convergence of the cooperative Kalman filter
and validated the algorithm in simulations. In this paper, we
investigate online parameter identification for 2D advection-
diffusion processes. By using the finite volume method, we
extend the cooperative filtering scheme [2] to the case with
N � 4 agents in an arbitrary formation to allow flexibility
in practical scenarios. Utilizing the state estimates from the
cooperative filtering scheme, a RLS algorithm is designed to
estimate the unknown model parameters of the advection-
diffusion process. We provide necessary bias analysis of
the proposed method. Additionally, we build a controllable
CO2 advection-diffusion field in a lab and design a sensor
grid that collects the field concentration over time to allow
the validation of the proposed algorithm in the CO2 field.
Experimental results show satisfactory performance.

The problem is formulated in Section II. Section III
presents the finite volume approximation model and Sec-
tion IV shows the cooperative Kalman filtering. Section
V illustrates the RLS and bias analysis of the proposed
method. Experiments results are presented in Section VI and
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conclusions follow in Section VII.

II. PROBLEM FORMULATION

In this section, we formulate the problem of online param-
eter estimation of advection-diffusion processes using mobile
sensor networks.
A. The model

We assume that system dynamics is described by the
following two-dimensional (2D) advection-diffusion process
defined on a domain W = [0,Lx]⇥ [0,Ly] 2 R2:

∂ z(r, t)
∂ t

= q—2z(r, t)+ vT —z(r, t), r 2 W, (1)

where z(r, t) is the concentration function, q > 0 is a constant
diffusion coefficient, — represents the gradient operator,
—2 represents the Laplacian operator, and v is a constant
vector representing the flow velocity, which is supposed to
be known through measurements. The initial and boundary
conditions for Equation (1) are assumed as z(r,0) = z0(r),
and z(r, t) = zb(r, t), r 2 ∂W, where z0(r) and zb(r, t) are the
arbitrary initial condition and Dirichlet boundary condition,
respectively. Many natural processes can be described by
the advection-diffusion equation (1). In many scenarios, q

is unknown or inaccurate, which requires identification.
B. Sensor dynamics

Consider a formation of N coordinated sensing agents
moving in the field, each of which carries a sensor that
takes point measurements of the field z(r, t). We consider
the sensing agents with single-integrator dynamics given by
ṙi(t) = ui(t), i = 1,2, ...,N, where ri(t) and ui(t)✓R2 are the
position and the velocity of the ith agent, respectively. In
most applications, the sensor measurements are taken dis-
cretely over time. Let the moment when new measurements
are available be tk, where k is an integer index. Denote the
position of the ith agent at the moment tk be rk

i and the field
value at rk

i be z(rk
i ,k). The measurement of the ith agent can

be modeled as

p(rk
i ,k) = z(rk

i ,k)+ni, (2)

where ni is assumed to be i.i.d. Gaussian noise. We have the
following assumption for the sensing agents.

Assumption II.1 Each agent can measure its position rk
i

and concentration value z(rk
i ,k), and share these information

with other agents.

The problem is formulated as:
1) Under Assumption II.1, develop a cooperative filtering

scheme that estimate the states z(r, t), —z(r, t), —2z(r, t),
and ∂ z(r,t)

∂ t based on the collected measurements in
Equation (2) using a mobile sensor network moving
in the advection-diffusion field.

2) Utilizing the estimated state, develop an online pa-
rameter identification algorithm that estimates the
unknown constant diffusion coefficient q of the
advection-diffusion equation (1).

III. THE FINITE VOLUME APPROXIMATION

Under Assumption II.1, the proposed parameter identifica-
tion algorithm is based on the discrete measurements taken
by mobile agents over time. In the following, we will first
build a finite volume approximation model of Equation (1).
Suppose the current time step is k. Let rk

c = [rk
c,x,rk

c,y]
T be

the center of the formation at the moment tk, i.e., rk
c =

1
N ÂN

i=1 rk
i . We discretize the advection-diffusion PDE (1) at

the formation center rk
c as,

z(rk
c ,k+1)� z(rk

c ,k)
ts

� vT —z(rk
c ,k) = q—2z(rk

c ,k), (3)

where ts is the sampling period.
If we can get the estimates of z(rk

c ,k + 1), z(rk
c ,k),

—z(rk
c ,k), and —2z(rk

c ,k), then q can be estimated using
RLS based on the semi-discrete model (3). To obtain these
state estimates, in Section IV, we will develop a constrained
cooperative Kalman filter to estimate z(rk

c ,k + 1), z(rk
c ,k),

and —z(rk
c ,k) along the moving trajectory of a mobile sensor

network. On the other hand, the Laplacian term —2z(rk
c ,k)

also requires to be estimated simultaneously. One simple
and straightforward way is to use finite difference method to
approximate —2z(rk

c ,k) =
Â4

i=1 z(rk
i ,k)�4z(rk

c ,k)
Dr , where Dr is the

spatial interval [2]. Unfortunately, this method only works
for the case when four agents are arranged in a symmetric
formation, which limits its capability for usage in actual
applications. In the following section, we will employ a finite
volume method to allow the estimation of —2z(rk

c ,k) with
N � 4 agents in an arbitrary formation.

We summarize the basic procedures following the finite
volume method [8]. We first denote the cells of agents as
Ck

1,Ck
2,...Ck

N , and the corresponding cell-centers as rk
1,rk

2,... rk
N .

We further denote the cells of the formation center rk
c as Ck

c .
The volume of the formation center cell Ck

c is denoted as
Wc, which is a finite volume. Let the surface area of Wc be
S = Sn̂, where n̂ is the outward unit vector. To illustrate the
idea and for notation convenience, we consider the case when
N = 4 in the following derivations. But our scheme can be
straightforwardly extended to the case when N � 4, which
will be specified in Remark III.1. As illustrated in Fig. 1, we
arrange four agents in an arbitrary formation. In this case,
the surface area S is the quadrilateral ABCD and Wc is the
volume of ABCD. The corresponding outward unit vector n̂
for the edge AB is n̂AB = rk

1rk
c , which means AB?rk

1rk
c . In a

similar way, we have BC?rk
2rk

c , CD?rk
3rk

c , and DA?rk
4rk

c .

Fig. 1. Finite-volume construction for a mobile sensor network in 2D.
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By integrating Equation (1) over a finite volume Wc, we
can have the following expression:

Z Z

Wc

∂

∂ t
z(r, t)� vT —z(r, t) dWc +

I

S
F · n̂dS = 0, (4)

where F = �q—z(r, t) is obtained by applying the Green’s
theorem [16].

The integration (4) over a cell area ABCD shown in Fig. 1
results in the semi-discrete equation as follows:

∂ z(rc, t)
∂ t

� vT —z(rc, t) =� 1
Wc

Â
f aces

(FAB ·SAB +FBC ·SBC

+FCD ·SCD +FDA ·SDA), (5)

where FAB ·SAB is the continuous flux on the edge AB, which
is expressed as diffusive terms as follows,

FAB ·SAB =�
Z

AB
q—z(r, t) · n̂AB dl, (6)

where n̂AB is the unit outer normal on the edge AB. The flux
terms with respect to the other edges FBC ·SBC, FCD ·SCD,
and FDA ·SDA have the similar definitions.

Next, we will derive —z(r, t), r 2 AB in Equation (4) at
time step k. With rk

1 being close to rk
c , z(rk

1,k) can be locally
approximated by using the Taylor expansion as,

z(rk
1,k)� z(rk

c ,k)⇡ (rk
1 � rk

c)
T —z(r,k) (7)

+
Z 1

0
(Hrk

1
�Hrk

c
)x dx , r 2 AB,

where Hrk
1
= (rk

1 � r)T H
�
x r+(1�x )rk

1,k
�
(rk

1 � r) with
H
�
x r+(1�x )rk

1,k
�

being the Hessian matrix at the point
x r +(1� x )rk

1, r 2 AB. The other notations Hrk
2
, Hrk

3
, Hrk

4
,

and Hrk
c

have the similar definition. Hence, by reorganizing
Equation (7), we can obtain the gradient term —z(r,k) for
the edge r 2 AB.

Substituting the expression of —z(r,k) into
R

AB q—z(r,k) ·
n̂AB dl gives,
Z

AB
q—z(r,k) · n̂AB dl = q

| A�B |
| rk

1 � rk
c |

⇣
z(rk

1,k)� z(rk
c ,k)

⌘

� q

| rk
1 � rk

c |

Z

AB

Z 1

0
(Hrk

1
�Hrk

c
)x dx dl. (8)

Denote EAB =� q

|rk
1�rk

c |
R

AB
R 1

0 (Hrk
1
�Hrk

c
)x dx dl. Since EAB is

the integration of the differences of two Hessian matrices, it
is obvious that EAB = O(h2), which is the higher order term
of the grid size h = sup

i=N
diam(Ck

i )
1/2. Here, diam(Ck

i ) is the

diameter of cell Ck
i .

By substituting (8) into (6), we can obtain

FAB ·SAB =�q

| A�B |
| rk

1 � rk
c |

⇣
z(rk

1,k)� z(rk
c ,k)

⌘
+EAB. (9)

In a similar way, we can obtain the normal flux on
the other sides, FBC · SBC = �q

|B�C|
|rk

2�rk
c |

�
z(rk

2,k)� z(rk
c ,k)

�
+

EBC, FCD · SCD = �q

|C�D|
|rk

3�rk
c |

�
z(rk

3,k)� z(rk
c ,k)

�
+ ECD, and

FDA ·SDA =�q

|D�A|
|rk

4�rk
c |

�
z(rk

4,k)� z(rk
c ,k)

�
+EDA. Then we can

rewrite Equation (5) as follows,

z(rk
c ,k+1)� z(rk

c ,k)
ts

� vT —z(rk
c ,k) = q

�1
Wc

[aAB · z(rk
1,k)+aBC·

z(rk
2,k)+aCD · z(rk

3,k)+aDA · z(rk
4,k)+acenter · z(rk

c ,k)]+ e(rk
c ,k),

(10)

where the a coefficients are as follows:

aAB =
| A�B |
| rk

1 � rk
c |

,aBC =
| B�C |
| rk

2 � rk
c |

,

aCD =
|C�D |
| rk

3 � rk
c |

,aDA =
| D�A |
| rk

4 � rk
c |

, (11)

acenter =� | A�B |
| rk

1 � rk
c |

� | B�C |
| rk

2 � rk
c |

� |C�D |
| rk

3 � rk
c |

� | D�A |
| rk

4 � rk
c |

,

and e(rk
c ,k) =� 1

Wc
(EAB +EBC +ECD +EDA) is the approxi-

mation error from omitting higher order terms using finite-
volume method. This then allows us to assume that the
modeling error e(rk

c ,k) is an independent noise sequence with
zero mean and finite variance.

For notation simplification, let us denote Â4
i=1 a

si ·
z(rk

i ,k) = aAB · z(rk
1,k)+aBC · z(rk

2,k)+aCD · z(rk
3,k)+aDA ·

z(rk
4,k). Then a finite volume approximation of the advection-

diffusion PDE (1) can be written as follows:

z(rk
c ,k+1)� z(rk

c ,k)
ts

� vT —z(rk
c ,k) = q

�1
Wc

[
4

Â
i=1

a

si · z(r
k
i ,k)

+acenter · z(rk
c ,k)]+ e(rk

c ,k). (12)

We can observe that Equation (12) is also a discretized
version of Equation (1) with a replacement of —2z(rk

c ,k)
with �1

Wc
[Â4

i=1 a

si · z(rk
i ,k)+acenter · z(rk

c ,k)] in Equation (3).
It should be noted that ts must obey the inequalities ts  4q

|v|2

and ts  h2

4q

for the discretization method to converge [8].

Remark III.1 Even though we only consider four agents
in the above derivation, the finite volume approximation of
the advection-diffusion model (1) can be readily extended to
the case when N � 4 following the implementation of the
standard finite-volume method outlined in [8].

IV. COOPERATIVE FILTERING FOR PARAMETER
IDENTIFICATION

In this section, we show how to design a cooperative
filtering scheme to sequentially estimate the states z(rk

c ,k+
1), z(rk

c ,k), —z(rk
c ,k) and Â4

i=1 z(rk
i ,k) over time.

A. Information dynamics for the cooperative Kalman filter
We first introduce the motivation of designing a coopera-

tive filter by pointing out the difference between z(rk
c ,k+1)

and z(rk
c ,k) in Equation (12). By designing a cooperative

filter similar to the one developed in [17], z(rk
c ,k) may be

directly estimated by combining the measurements taken by
the sensing agents at time step k. However, at time step
k+1, the formation center of the group is at position rk+1

c .
Therefore, the cooperative filter design in [17] can only
provide the estimate of z(rk+1

c ,k+1), not z(rk
c ,k+1). In order

3232



to estimate the temporal variations of the field value along
the trajectory, we first need to derive a cooperative filter to
estimate both z(rk

c ,k) and z(rk
c ,k+1).

To construct a cooperative Kalman filter to obtain the
estimates of z(rk

c ,k) and z(rk
c ,k + 1), we first analyze the

dynamics of the advection-diffusion field value along the
trajectory of the formation center rc according to

ż(rc, t) =
∂ z(rc, t)

∂ rc

drc

dt
+

∂ z(rc, t)
∂ t

= —z(rc, t) · ṙc +
∂ z(rc, t)

∂ t
,

(13)
where —z(rc, t) is the gradient of z(rc, t). To discretize
Equation (13), the finite differences of each term of (13)
at time t = tk�1 and at position rc = rk�1

c give:

ż(rc, t)| t=tk�1,rc=rk�1
c

⇡ z(rk
c ,k)� z(rk�1

c ,k�1)
ts

, (14)

—z(rc, t) · ṙc| t=tk�1,rc=rk�1
c

⇡ (rk
c � rk�1

c )T —z(rk�1
c ,k�1)

ts
.

Substituting Equation (14) and the finite volume equation
(12) into Equation (13) gives the information dynamics of
z(rk

c ,k) as

z(rk
c ,k) =

 
1+

acenterq̂kts
Wc

!
z(rk�1

c ,k�1)� q̂kts
Wc

4

Â
i=1

a

si

(15)
· z(rk�1

i ,k�1)+(rk
c � rk�1

c + vts)T —z(rk�1
c ,k�1)+w(rk

c ,k),

where q̂k is the estimate of q , which can be obtained from the
RLS method that will be introduced in Section V. w(rk

c ,k)
is the error term, which accounts for positioning errors,
estimation errors for the Hessian matrix, and errors caused by
higher-order terms omitted from the finite volume scheme.

Similarly, we also obtain the dynamics of z(rk
c ,k+ 1) by

discretizing Equation (13) at t = tk and rc = rk�1
c .

z(rk
c ,k+1) =

 
1+

acenterq̂kts
Wc

!
z(rk�1

c ,k)� q̂kts
Wc

4

Â
i=1

a

si

· z(rk
i ,k)+(rk

c � rk�1
c + vts)T —z(rk�1

c ,k)+w(rk
c ,k). (16)

Furthermore, we are also interested in estimating —z(rc, t)
since the gradient estimate is not only necessary for the
RLS method, but also used in the motion control that will
be introduced in Section IV-D. We derive the total time
derivative of —z(rc, t) as

—̇z(rc, t) = H(rc, t) · ṙc +
∂—z(rc, t)

∂ t
, (17)

where H(rc, t) is the Hessian matrix, and ∂—z(rc,t)
∂ t is the high-

er order term, which can be considered as noise. By discetiz-
ing Equation (17) at t = tk�1,rc = rk�1

c and t = tk,rc = rk�1
c ,

respectively, we can get that —z(rk
c ,k) and —z(rk

c ,k + 1)
evolve according to the following equations:

—z(rk
c ,k) = —z(rk�1

c ,k�1)+H(rk�1
c ,k�1)(rk

c � rk�1
c ),

—z(rk
c ,k+1) = —z(rk�1

c ,k)+H(rk�1
c ,k)(rk

c � rk�1
c ).

(18)

Define the information state as X(k + 1) =
[z(rk

c ,k),—z(rk
c ,k),z(rk

c ,k + 1),—z(rk
c ,k + 1)]T . By combing

(15), (16), and (18), the information state evolves according
to the following equation:

X(k+1) = A
q̂

(k)X(k)+U(k)+w(k), (19)

where w(k) = [w(rk
c ,k � 1),0,w(rk

c ,k),0]T represents the
model error terms in Equation (15) and (16). We denote
the covariance matrix of w(k) as E[w(k)w(k)T ] = W . The
matrices A

q̂

(k) and U(k) are defined by

A
q̂

(k) =

2

4
1+ acenter q̂kts

Wc
(rk

c � rk�1
c + vts)T

0 I2⇥2
0 0
0 0

0 0
0 0

1+ acenter q̂kts
Wc

(rk
c � rk�1

c + vts)T

0 I2⇥2

3

5 . (20)

U(k) =

2

6664

� q̂kts
Wc

Â4
i=1 a

si · z(r
k�1
i ,k�1)

H(rk�1
c ,k�1)(rk

c � rk�1
c )

� q̂kts
Wc

Â4
i=1 a

si · z(rk
i ,k)

H(rk�1
c ,k)(rk

c � rk�1
c )

3

7775
, (21)

where H(rk�1
c ,k) is the Hessian matrix. We observe that U(k)

is determined by the values of z(rk�1
i ,k�1), z(rk

i ,k), and the
Hessian matrix, which will be specified in Section IV-C.

A measurement equation is also required for the cooper-
ative Kalman filter. By applying formation control, rk

i and
rk�1

i can be controlled to be close to rk�1
c . Therefore, the

concentration can be locally approximated by a Taylor series
up to second order as

z(rk�1
i ,k�1)⇡ z(rk�1

c ,k�1)+(rk�1
i � rk�1

c )T —z(rk�1
c ,k�1)

+
1
2
(rk�1

i � rk�1
c )T H(rk�1

c ,k�1)(rk�1
i � rk�1

c ),

z(rk
i ,k)⇡ z(rk�1

c ,k)+(rk
i � rk�1

c )T —z(rk�1
c ,k) (22)

+
1
2
(rk

i � rk�1
c )T H(rk�1

c ,k)(rk
i � rk�1

c ).

Let P(k) = [p(rk�1
1 ,k � 1) · · · p(rk�1

N ,k �
1) p(rk

1,k) · · · p(rk
N ,k)]

T . By combing Equation (2) and
Equation (22), the measurement equation can be modelled
in a vector form as,

P(k) =C(k) ·X(k)+D(k)Ĥ(k)+D(k)e(k)+n(k), (23)

where Ĥ(k)= [Ĥ(rk�1
c ,k�1) Ĥ(rk�1

c ,k)]T is a column vector
obtained by rearranging elements of the estimate of Hessian
terms, e(k) represents the error in the estimation of the
Hessian matrices, n(k) is the Gaussian measurement ni in
a vector form, E[e(k)e(k)T ] = Q, E[n(k)n(k)T ] = R. D(k)
is a matrix with its first N rows defined by [ 1

2 ((r
k�1
i �

rk�1
c )

N
(rk�1

i � rk�1
c ))T 0] and last N rows defined by

[0 1
2 ((r

k
i � rk�1

c )
N
(rk

i � rk�1
c ))T ], where i = 1,2, · · · ,N andN

is the Kronecker product. C(k) is a matrix with its first
N rows defined by [1 (rk�1

i � rk�1
c )T 0 0] and last N rows

defined by [0 0 1 (rk
i � rk�1

c )T ] for i = 1,2, · · · ,N.
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Fig. 2. Block diagram of the relationship between z(rk
c ,k+1) and z(rk

c ,k).

B. The PDE state constraint
We observe that the matrices A

q̂

(k), C(k), and D(k)
are block diagonal matrices. That means the information
dynamics (19) was obtained here as a direct combination
of the semidiscrete ODE (16) for the state z(rk

c ,k+ 1) and
ODE (15) for the state z(rk

c ,k). As a matter of fact, the state
z(rk

c ,k + 1) and z(rk
c ,k) are the “future and present” state

estimates at a given position r = rk
c , which are discretized

terms of ∂ z(rc,t)
∂ t in Equation (12). Hence, there is a PDE

constraint between the state z(rk
c ,k+1) and z(rk

c ,k) at each
step, which is shown in Fig. 2. By rewriting Equation (12),
we can obtain the PDE constraint:

z(rk
c ,k+1)+(

acenterq̂kts
Wc

�1)z(rk
c ,k)+ vT ts—z(rk

c ,k)

=
�q̂kts

Wc

4

Â
i=1

a

si · z(r
k
i ,k) (24)

The state equality constraint can be rewritten as follow:

G(k) ·X(k) = d(k), (25)

where G(k) = [(acenter q̂kts
Wc

� 1) 0 1 vT ts] and d(k) =
�q̂kts

Wc
Â4

i=1 a

si · z(r
k�1
i ,k�1).

We observe that the proposed cooperative Kalman filter is
based on the time-varying information dynamics (19) with
the state equality constraint (25). This type of filter has
been previously investigated in [18]. By following canonical
procedures in [18], the equations for the cooperative Kalman
filter with state equality constraints can be obtained. Details
of the cooperative Kalman filter can be found in [2].

C. Cooperative estimation of the Hessian
Estimates of z(rk

i ,k), z(rk�1
i ,k�1), and the Hessian Ĥ(k)

in the matrix U(k) (21) are needed to enable the cooperative
Kalman filter.

1) Estimates of z(rk
i ,k) and z(rk�1

i ,k � 1): Since the
sensor measurements p(rk

i ,k) and p(rk�1
i ,k�1) are available

in the measurement vector P(k), one straightforward and
simple way is to replace z(rk

i ,k) and z(rk�1
i ,k�1) with the

sensor measurements p(rk
i ,k) and p(rk�1

i ,k � 1), which is
adopted in this paper.

2) Cooperative estimation of the Hessian: By time step
k � 1, we have obtained an estimate of X̂+(k � 1) from
the cooperative Kalman filter. Using the computed esti-
mates X̂+(k � 1) and U(k � 1), before the arrival of mea-
surements at time step k, we can obtain a prediction for
X(k) as X̂�(k) = A

q̂

(k � 1)X̂+(k � 1) +U(k � 1). Here,

we use subscript (�) to indicate predictions and (+) to
indicate updated estimates. If we assume the number of
sensor N � 4 and the formation is not co-linear, we have
P(k) = C(k) · X̂�(k)+D(k)Ĥ(k). The Hessian estimate can
be solved by using the least mean square method, Ĥ(k) =�
D(k)T D(k)

��1 D(k)T �P(k)�C(k)X̂�(k)
�
.

D. Formation and motion control
Control laws for the velocities of the agents are required

so that the mobile sensor network can move along a certain
trajectory while maintaining a desired formation. Thus, the
finite volume Wc, as well as the coefficients aAB, aBC, aCD,
aDA, and acenter can be considered as constants. We view
the entire formation as a deformable body. Thus, there are
two parts of control: motion control and formation control.
With the gradient estimates provided by the cooperative
Kalman filter, the motion control for the agents can be
easily realized by setting the velocities of the agents to
be aligned with the estimated gradient direction. Thus, the
mobile sensor network can achieve simultaneously parameter
estimation and gradient climbing. Furthermore, there exists
several results about the formation control for mobile agents
[17] [19]. We omit the detailed design of control here due
to space limitation. Interested readers can refer to [17] [19].

V. RECURSIVE LEAST SQUARE ESTIMATION

A. The RLS method
In this section, we use the RLS method to iteratively

update the estimate of q based on the discretized model
(12). We do this using the information state X̂(k + 1) =
[ẑ(rk

c ,k),—ẑ(rk
c ,k), ẑ(rk

c ,k + 1),—ẑ(rk
c ,k + 1)]T obtained from

the cooperative Kalman filter to calculate the temporal vari-
ations of the field value ẑ(rk

c ,k+1)�ẑ(rk
c ,k)

ts . By combing the
left terms of Equation (12), we denote the term Ŷ (rk

c ,k)
as Ŷ (rk

c ,k) =
ẑ(rk

c ,k+1)�ẑ(rk
c ,k)

ts � vT —ẑ(rk
c ,k), where the hat

notation indicates that Ŷ (rk
c ,k) is the estimate from the

cooperative Kalman filter. Note that the time index k is the
same as the index in the cooperative Kalman filter.

Since the convergence of the cooperative Kalman filter has
already been proved in [2], we can have

Ŷ (rk
c ,k) = Y (rk

c ,k)+ V(rk
c ,k), (26)

where Ŷ (rk
c ,k) is the estimate of Y (rk

c ,k), all elements of
which come from the cooperative Kalman filter and V(rk

c ,k)
is a Gaussian noise with zero mean and bounded covariance.
With the combination of Equation (12) and (26), the finite
volume approximation model can be represented as

Ŷ (rk
c ,k) = q · �1

Wc
[

4

Â
i=1

a

si · z(r
k
i ,k)+acenter · z(rk

c ,k)]

+ V(rk
c ,k)+ e(rk

c ,k) = Pẑq +h(k), (27)

where h(k) = V(rk
c ,k) + e(rk

c ,k) + (Pz � Pẑ)q ,
Pz = �1

Wc
[Â4

i=1 a

si · z(rk
i ,k) + acenter · z(rk

c ,k)], and
Pẑ = �1

Wc
[Â4

i=1 a

si · p(rk
i ,k) + acenter · ẑ(rk

c ,k)]. The RLS
parameter identification is based on minimizing the mean

3234



squared error criterion J = E[h(k)2], where E[.] denotes
the expectation value. Therefore, based on the cooperative
filtering scheme, the diffusion coefficient can be directly
estimated without the need of numerically solving the
diffusion equation. Given an initial estimate for the
diffusion coefficient, a simple application of the RLS
method can iteratively update the estimate of q . Following
the canonical procedure of RLS estimation outlined in [20],
we derive the following equations to update the estimate q .

q̂k = q̂k�1 +g(k)
⇣

Ŷ (rk
c ,k)�Pẑq̂k�1

⌘
;

g(k) = h(k�1)PT
ẑ
⇥
Pẑh(k�1)PT

ẑ +Re
⇤�1 ;

h(k) = (I �g(k) ·Pẑ)h(k�1),

(28)

where g(k) is the estimator gain matrix, h(k) is the estima-
tion error covariance matrix, and Re is the noise covariance.

In the above framework, we can observe that the proposed
recursive cooperative filtering scheme is based on two sub-
systems: cooperative Kalman filtering subsystem (Equations
(19) and (23)) and RLS subsystem in (28). In the cooperative
Kalman filtering subsystem, assume that the parameter q̂k
is known, we run the cooperative Kalman filter to estimate
the states based on the collected measurements. In the RLS
subsystem, assume that the estimated states can track the true
values, we employ the RLS method to iteratively update the
estimate of q . It should be noted that the convergence of
the proposed closed loop recursive scheme heavily depends
on the property that the convergence of the Kalman filter
is independent of the estimated parameter q̂k, which is used
in the Kalman filter in Equation (19). In other words, the
estimated states from the cooperative Kalman filtering can
successfully track the true values even though the estimated
parameter q̂k is biased. This part of convergence proof has
been published in our previous work [2].

B. The bias analysis of the RLS method
We further provide the bias analysis of the RLS method

and have the following proposition.

Proposition V.1 Consider the RLS updated laws in (28).
Under the assumption that the modelling error e(rk

c ,k) is
an independent noise with zero mean and finite variance,
the RLS algorithm produces a biased estimation of q in the
presence of Gaussian noise V(rk

c ,k).

Proof: The RLS algorithm in (28) gives rise to the
estimate of q as,

q̂ = E[PT
ẑ Pẑ]

�1E[PT
ẑ Ŷ (rk

c ,k+1)]. (29)

Since V(rk
c ,k) and e(rk

c ,k) are i.i.d. Gaussian noises, then

E[PT
ẑ h(rk

c ,k+1)] = E[PT
ẑ e(rk

c ,k+1)]+E[PT
ẑ e(rk

c ,k)] (30)
+E[PT

ẑ (Pz �Pẑ)]q = E[PT
ẑ (Pz �Pẑ)]q ,

which is generally not zero and yields a biased estimation
of q̂ , even if we assume the modelling error e(rk

c ,k+1) is a
Gaussian noise, as follows

q̂ = q +E[PT
ẑ Pẑ]

�1E[PT
ẑ (Pz �Pẑ)]q . (31)

VI. EXPERIMENT

In this section, we introduce the design of a controllable
CO2 diffusion field in our lab. By validating the proposed
algorithm in this real field, we demonstrate that the algorithm
is robust under realistic uncertainties and disturbances.

A. Generating and visualizing a diffusion Field

A reference CO2 diffusion field is produced in our lab in
an area of 3.5 ⇥ 3.5m2. When experiment begins, 15 CFH
( f t3/h) amount of CO2 gas is released from an outlet 0.49
meters above the area for 8 minutes. Then the release stops
and the gas diffuses freely for 10 minutes until the gas
concentration in the room decreases back to normal values.
Since CO2 is a transparent and invisible gas, a sensor grid
is assembled to measure the concentration of the gas over
the area. We illustrate the structure of the sensor grid in
Fig. 3, which consists of 24 CO2 sensors, 8 ARM-mbed
microcontrollers, and an ‘H’ shaped steel frame. In this
experiment, the sensors are evenly distributed as an asterisk
shape as indicated in Fig. 3. The microcontrollers are used
to collect and store the data from the sensors and send them
to a central computer. The ‘H’ shaped steel frame is built
to support the sensor grid. We choose K-30 CO2 sensors
to capture the gas concentration. The range of the sensor
measurement is [0,10000] ppm. The measuring frequency
of the sensors is set to 0.5Hz, which can guarantee the
successfully tracking of the dynamics of CO2 gas. The
diffusion process obtained from the real field is shown in
Fig. 4. CO2 begins diffusing at step k = 0 and ends at k =
625. The computational time step is 1 second.

(a) (b)

Fig. 3. The illustration of the sensor grid.

Fig. 4. The diffusion field collected and visualized by MATLAB.
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B. Experimental results
We perform two different experiments for diffusion coeffi-

cient identification with four sensing agents deployed in the
field. We choose two different starting points for the agents:
northeast (NE) starting point and southeast (SE) starting
point. The robots are controlled to move along the gradient
direction of the field estimated from the cooperative Kalman
filter while keeping a constant formation. In Fig. 5, the
contours represent the level curves of the diffusion field, the
colored stars represent the four sensing agents, the red line
and blue line represent the trajectories of the center of the
mobile sensor network staring from NE and SE, respectively.
Since the field is pre-collected in MATLAB, it can be repeat-
ably used for both experiments. As we can observe from the
figure, the robots trace the gradient of the diffusion field in
both experiments to find the diffusion source of the CO2
gas, which is the point with the highest CO2 concentration.
Both of the two groups arrive at the source around step
k = 550. While the mobile sensor network is searching
for the source, it also achieves real-time identification of
the diffusion coefficient by implementing the cooperative
Kalman filter and the RLS. The estimation results of the
diffusion coefficient are shown in Fig. 6. As we can observe
from Fig. 6 that, the estimates of the parameter converge to
stabilized values in both experiments. The two values differ
by an amount of 0.1996. This difference may be caused by
the influence of the velocity components of the CO2 flow.
Nevertheless, it is seen that the proposed algorithm is robust
under realistic uncertainties and disturbances.

Fig. 5. The trajectories of the robots in the two experiments.

Fig. 6. The estimated diffusion coefficient.

VII. CONCLUSION

We propose a novel filtering scheme for performing on-
line parameter estimation for advection-diffusion processes

utilizing a mobile sensor network. By using the finite volume
approximation, the proposed scheme can deal with the case
when N � 4 agents are arranged in an arbitrary formation.
Theoretical justifications are provided for the biased analysis
of RLS. Experiment results based on a real CO2 field show
satisfactory performance. Future work includes extending the
proposed algorithm to other types of PDEs.
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