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Abstract: Modeling and predicting ocean flow are great challenges in physical oceanography.
To answer such challenges, mobile sensing platforms have been an effective tool for providing
Lagrangian flow information. Such information is typically incorporated into ocean models
using Lagrangian data assimilation which requires significant amount of computing power and
time. Motion tomography (MT) constructs generic environmental models (GEMs) that combine
computational ocean models with real-time data collected from mobile platforms to provide high-
resolution predictions near the mobile platforms. MT employs Lagrangian data from mobile
platforms to create a spatial map of flow in the region traversed by the mobile platforms. This
paper extends the MT method to resolve the coupling between temporal variations and spatial
variations in flow modeling. Along with Lagrangian data from a mobile sensor, Eulerian data
are collected from a stationary sensor deployed in the region where the mobile sensor collects
data. Assimilation of these two data sets into GEMs introduces a nonlinear filtering problem.
This paper presents the formulation of such nonlinear filtering problem and derives a filtering
method for estimating flow model parameters. We analyze observability for the derived filters
and demonstrate that the resulting method improves navigation accuracy for mobile platforms.
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1. INTRODUCTION

Ocean flow modeling is an active research area in oceanog-
raphy. The geophysical dynamics of ocean flow can be
modeled by partial differential equations (PDEs) that are
solved numerically (e.g., Luettich et al., 1992; Bleck, 2002;
Shchepetkin and McWilliams, 2005) under known initial
and boundary conditions. However, the lack of direct
measurements and the large scale of the ocean system
hamper obtaining high spatio-temporal resolution solu-
tions to these PDEs. In addition, because of uncertainties
in ocean models, the accuracy of the solutions degrades
in time. To overcome such challenges, the data collected
from various ocean observing technologies can be used to
estimate solutions. This technique is typically referred to
as data assimilation (Apte et al., 2008).

Among various ocean observing technologies, earlier ones
such as satellites and buoys provide Eulerian flow informa-
tion. On the other hand, recent technologies such as mobile
sensing platforms (e.g., autonomous underwater vehicles
[AUVs]) are viewed as an effective tool for providing La-
grangian flow information (Curtin et al., 1993; Fratantoni
and Haddock, 2009; Leonard et al., 2010). The introduc-
tion of mobile platforms triggered Lagrangian data assimi-
lation scheme (Kuznetsov et al., 2003). This paper presents
a computationally efficient method that fuses Lagrangian
data collected by mobile sensing platforms along with
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Eulerian data into a high-resolution computational ocean
model, which can also be used to navigate the vehicles.

The motions of mobile sensing platforms are affected by
ambient flow; therefore, knowledge of the flow field can
improve their navigation. Typical data assimilation meth-
ods (e.g., Kalman filtering and variational techniques such
as three-dimensional/four-dimensional variational data as-
similation [3DVAR/4DVAR]) for numerical ocean models
require significant amount of computing power apart from
that for supporting AUV navigation. In addition, existing
regional ocean models are mostly formulated on a spa-
tial resolution of a few kilometers, but AUV navigation
requires sub-kilometer spatial resolutions.

To serve the need for high-resolution flow data, we de-
velop generic environmental models (GEMs) (Chang et al.,
2014, 2015, 2016) which are data-driven computational
models combined with real-time data streams collected
from AUVs. GEMs provide high-resolution predictions of
ocean flow near the mobile platforms. For example, the
ocean model proposed in Chang et al. (2014) approximates
ocean flow using spatial and temporal basis functions. The
model parameters are initialized based on historic data
such as HF-radar observations or general oceanic circula-
tion model output. Once initialized, the model assimilates
Lagrangian flow estimates from a fleet of AUVs using a
Kalman filter to update model parameters in real time.

This paper extends the motion tomography (MT) method
(Wu et al., 2013; Chang et al., 2016) and continues the line
of work to develop a data assimilation method for GEMs
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such as HF-radar observations or general oceanic circula-
tion model output. Once initialized, the model assimilates
Lagrangian flow estimates from a fleet of AUVs using a
Kalman filter to update model parameters in real time.

This paper extends the motion tomography (MT) method
(Wu et al., 2013; Chang et al., 2016) and continues the line
of work to develop a data assimilation method for GEMs
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1. INTRODUCTION

Ocean flow modeling is an active research area in oceanog-
raphy. The geophysical dynamics of ocean flow can be
modeled by partial differential equations (PDEs) that are
solved numerically (e.g., Luettich et al., 1992; Bleck, 2002;
Shchepetkin and McWilliams, 2005) under known initial
and boundary conditions. However, the lack of direct
measurements and the large scale of the ocean system
hamper obtaining high spatio-temporal resolution solu-
tions to these PDEs. In addition, because of uncertainties
in ocean models, the accuracy of the solutions degrades
in time. To overcome such challenges, the data collected
from various ocean observing technologies can be used to
estimate solutions. This technique is typically referred to
as data assimilation (Apte et al., 2008).

Among various ocean observing technologies, earlier ones
such as satellites and buoys provide Eulerian flow informa-
tion. On the other hand, recent technologies such as mobile
sensing platforms (e.g., autonomous underwater vehicles
[AUVs]) are viewed as an effective tool for providing La-
grangian flow information (Curtin et al., 1993; Fratantoni
and Haddock, 2009; Leonard et al., 2010). The introduc-
tion of mobile platforms triggered Lagrangian data assimi-
lation scheme (Kuznetsov et al., 2003). This paper presents
a computationally efficient method that fuses Lagrangian
data collected by mobile sensing platforms along with

� The research work is supported by ONR grants N00014-10-10712
(YIP) and N00014-14-1-0635; and NSF grants OCE-1032285, IIS-
1319874, and CMMI-1436284.

Eulerian data into a high-resolution computational ocean
model, which can also be used to navigate the vehicles.

The motions of mobile sensing platforms are affected by
ambient flow; therefore, knowledge of the flow field can
improve their navigation. Typical data assimilation meth-
ods (e.g., Kalman filtering and variational techniques such
as three-dimensional/four-dimensional variational data as-
similation [3DVAR/4DVAR]) for numerical ocean models
require significant amount of computing power apart from
that for supporting AUV navigation. In addition, existing
regional ocean models are mostly formulated on a spa-
tial resolution of a few kilometers, but AUV navigation
requires sub-kilometer spatial resolutions.

To serve the need for high-resolution flow data, we de-
velop generic environmental models (GEMs) (Chang et al.,
2014, 2015, 2016) which are data-driven computational
models combined with real-time data streams collected
from AUVs. GEMs provide high-resolution predictions of
ocean flow near the mobile platforms. For example, the
ocean model proposed in Chang et al. (2014) approximates
ocean flow using spatial and temporal basis functions. The
model parameters are initialized based on historic data
such as HF-radar observations or general oceanic circula-
tion model output. Once initialized, the model assimilates
Lagrangian flow estimates from a fleet of AUVs using a
Kalman filter to update model parameters in real time.

This paper extends the motion tomography (MT) method
(Wu et al., 2013; Chang et al., 2016) and continues the line
of work to develop a data assimilation method for GEMs
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using both Lagrangian and Eulerian data. The original MT
method employs Lagrangian data collected from multiple
AUVs to formulate an “inverse problem” that has been
the core problem underlying medical CT (computerized
tomography). By solving this inverse problem, MT con-
structs a high-resolution spatial map of flow in the region
traversed by AUVs. In addition to the Lagrangian data
collected by the AUVs, this paper also considers Eulerian
data provided by stationary sensors such as a moored
buoy. GEMs assimilate these two types of data streams
by solving a nonlinear filtering problem. The fusion of
the two data streams complement each other in that the
Lagrangian data has much slower time scale than the Eu-
lerian data but it provides necessary spatial coverage and
spatial resolution for the GEM. We demonstrate that the
resulting GEM improves navigation accuracy for AUVs.

The rest of the paper is organized as follows. Section
2 introduces a data-driven flow model and data sources
that can be used for the model. Section 3 presents our
data assimilation approach that combines Eulerian and
Lagrangian data through a Kalman filter. Then, observ-
ability analysis for the designed Kalman filter is presented
in Section 4. Section 5 demonstrates the proposed method
through simulations and Section 6 concludes the paper.

2. FLOW FIELD MODELING

For fast computation and high resolution, data-driven flow
models approximates ocean flow by using basis functions
such as Fourier series, wavelets, piecewise polynomials, and
splines. The weights of these basis functions are estimated
from data streams collected from various sources.

2.1 Parametric Flow Field Model

Let us denote the time by t ∈ R and the position by r ∈ R2.
To approximate the temporal and spatial variations of
flow, we use temporal and spatial basis functions. For
position r, we define spatial basis functions indexed by
m as φm(r) ∈ R. For time t, temporal basis functions
indexed by n is given by ψn(t) ∈ R. Then, with M spatial
basis functions and N temporal basis functions, the x and
y components of flow velocity f are represented by

fx(r, t) =

(
M∑

m=1

ηx,mφm(r)

)(
N∑

n=1

ρx,nψn(t)

)

fy(r, t) =

(
M∑

m=1

ηy,mφm(r)

)(
N∑

n=1

ρy,nψn(t)

)
,

(1)

where η and ρ are constant parameters coupled with
spatial and temporal basis functions, respectively.
Remark 1. Note that the model (1) is valid under the
assumption of separation of variables. In other words, we
assume that the flow field, as the solution of the geophysi-
cal PDEs, can be approximated by a space dependent term
multiplied by a time dependent term. This assumption sig-
nificantly simplifies filtering steps for our system later. A
state equation for the parameters is formulated to account
for the error associated with this approximation.

We define all the spatial parameters as ηx = [· · · , ηx,m, · · · ]T
and ηy = [· · · , ηy,m, · · · ]T and all the temporal parameters
as ρx = [· · · , ρx,n, · · · ]T and ρy = [· · · , ρy,n, · · · ]T . By

stacking them up, we define Θx = [ηTx , ρ
T
x ]

T and Θy =
[ηTy , ρ

T
y ]

T . Then, we can rewrite (1) as

fx(r, t) = h(r, t; Θx)

fy(r, t) = h(r, t; Θy),
(2)

where h(r, t; ·) is a nonlinear mapping from Θx,Θy ∈
RN+M to fx, fy ∈ R, respectively.

2.2 Data Sources of Flow Measurements

In this paper, we consider both Eulerian and Lagrangian
data sources of flow measurements. Three of the typical
data sources are reviewed.

The HF-radar system is a shore-based remote sensing
system for coastal sea surface current observation using
the over-the-horizon radar technology. Shore stations emit
radio signals that bounce off surface waves and return
to receiver. The received radio wave is used to compute
ocean surface current movement relative to ocean surface
wave movement. In general, hourly data with 6 × 6 km2

spatial resolution are published online with a three hour
processing delay. In addition to this operational limit,
even though HF-radar provides Eulerian data with a large
spatial coverage, its spatial resolution is considered low for
operation of mobile sensing platforms.

A buoy is a floating device that can be stationary at
an installed location or mobile drifting with the ocean
currents. In this paper, we only consider stationary buoys.
Buoys with the current meter can measure ocean currents
typically every hour at various depths from near the sea
surface to near the sea bottom. Although a buoy provides
Eulerian data on fast time scales, since it is fixed at
one location, its flow data provides insufficient spatial
variability for mobile sensing platforms.

In addition to the above Eulerian flow data sources,
AUVs are important tools for providing Lagrangian flow
data. AUVs typically have limited localization capabilities
underwater (Zhang et al., 2015), so their actual positions
are available when they are at the surface. Therefore,
AUVs in general follow predicted trajectories generated
prior to diving into the water. Since the motion of an
AUV is perturbed by ambient flow, its actual trajectory
deviates from its predicted trajectory. The difference of
these two trajectories caused by deviation is referred to
as the motion-integration error. Some AUVs estimate
constant flow velocity along their last trajectories based
on the motion-integration error. Both this flow estimate
and the motion-integration error itself are very important
data that provide Lagrangian flow information.

3. DATA ASSIMILATION

This section presents a data assimilation method to update
the estimates of the parameters in (2) based on measure-
ments from a buoy and trajectory information of an AUV.
Given flow model (2), we use a state variable Θ to denote
either Θx or Θy. Suppose a buoy provides Eulerian flow
data with sampling period Ts. In addition, suppose an
AUV navigates near the buoy, providing Lagrangian flow
data every αTs, α ∈ N+ ≥ 2 where N+ denotes positive
integer. Since the time scale of buoy data is smaller, we let
Θk = Θ(kTs) where k is the time step index.
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Fig. 1. Illustration of MT mapping formulation. Actual
(the blue solid line) and predicted (the blue dashed
line) vehicle trajectories are displayed.

To account for the inaccuracy of the ocean modeling
techniques, we consider

Θk+1 = Θk + wk, (3)

where wk is the process noise at the kth step. We assume
wk is Gaussian with zero mean and known covariance Qk.

For time step k and position r, let us define an observation
variable zk(r) to be observation of either fx(r, kTs) or
fy(r, kTs). Provided that a buoy is deployed at rE , Eule-
rian flow observation at time step k is denoted by zEk (rE).
We use MT to convert the Lagrangian data collected from
an AUV to a spatial map of flow. Figure 1 illustrates how
MT mapping is formulated. (MT will be introduced in
Section 3.1.) Suppose the map of the flow field contains
P grid cells. Let rLj be a position that represents the jth
grid cell. Then, we denote flow observation based on the
Lagrangian data at time step k by zLk (r

L
j ), j = {1, · · · , P}.

For both Eulerian and Lagrangian observations defined
as zk = [zEk (rE), zLk (r

L
1 ), · · · , zLk (rLP )], the observation

equation at time step k is given by

zk = Hk(Θk) + vk, (4)

where observation noise vk is Gaussian with zero mean and
known covariance matrix Rk and matrix H is defined as

Hk(Θk) =




hk(r
E ,Θk)

hk(r
L
1 ,Θk)
...

hk(r
L
P ,Θk)


 , (5)

where hk(r,Θ) = h(r, kTs; Θ) defined in (2).

Even though state equation (3) is linear, we have nonlinear
observation equation (4), leading to a nonlinear filtering
problem for parameter estimation. To solve this nonlin-
ear filtering problem, we decouple spatial and temporal
parameter estimation and decompose a nonlinear filter
into two linear sub-filters. Then, we consider one set of
parameters as constant and solve the filtering problem for
the other set of parameters. Since Lagrangian data through
MT provide higher spatial variations than Eulerian data,
we use Lagrangian data to update spatial parameters and
Eulerian data to update temporal parameters.

3.1 Motion Tomography

MT estimates a flow field map from the motion-integration
error and trajectory information of the AUV. Suppose an
AUV travels in domain D (see Fig. 1) over observation
interval T = [t0, tf ] with no prior flow information and its
position is available only at time t0 and tf . Let us define
γ(t), t ∈ T as the vehicle trajectory. Then, the motion-
integration error over T is given by

d(γ, T ) =

∫ tf

t0
ṙ(τ, f)− ˙̃r(τ, f̃)dτ =

∫ tf

t0
f(r, t)dτ, (6)

where f(r, t) is real flow and prior flow information f̃ is
assumed zero.

After assuming time-invariant flow and substituting arc-
length parameter � for curve γ, given by

d� = str(f(r))dt, (7)

in which str is the speed of the vehicle along its actual
trajectory, we derive

d =

∫

γ

1

str(f(r))
f(r)d�. (8)

We discretize domain D into P =R×S grid cells with D(r,s)

referring to the (r, s)th cell and define index j = (r−1)S+s
such that Dj ≡ D(r,s), j = {1, · · · , P}. For the jth cell,
let us denote flow velocity by fj and assume a linear
trajectory. From r(t0), a vehicle trajectory within a cell
depends on flow along the trajectory up to the current
cell. Therefore, for trajectory γ of a vehicle traveling from

t = t0 to t = tfj , in which tfj is the time that the vehicle
leaves cell Dj , we define a set of indices for cells the vehicle
trajectory visits as κj = {n|[Dn] ∩ {γ(t)}t∈[t0,tf

j
] �= ∅} and

the length of a vehicle trajectory within Dj as Lj(fκj
).

Based on the above discretization, (8) can be rewritten as

d =
P∑

j=1

Lj(fκj )

str(fj)
fj . (9)

Separating the x and y components of flow, we have

dx =

P∑
j=1

Lj(fκj )

sjtr(fj)
fx,j , dy =

P∑
j=1

Lj(fκj )

sjtr(fj)
fy,j . (10)

Defining fx = [fx,1, · · · , fx,P ]T , fy = [fy,1, · · · , fy,P ]T , and

L(f) =

[
L1(fκ1

)

s1tr(f1)
· · · LP (fκP

)

sPtr(fP )

]
, (11)

we can rewrite (10) as

dx = L(f)fx, dy = L(f)fy, (12)

where f = [fTx , fTy ]T . The MT method creates a map of the
underlying flow field f by solving the motion-integration
error equations in (12) through an iterative process that
consists of trajectory tracing and flow field estimation (Wu
et al., 2013; Chang et al., 2016).

3.2 Spatial Parameter Estimation

Suppose the basis functions and the previous estimates of
parameters for (1) are known. Let us omit subscripts x and
y for simplicity of presentation. Given an estimated flow
field map computed through MT, we fix all the temporal
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To account for the inaccuracy of the ocean modeling
techniques, we consider

Θk+1 = Θk + wk, (3)

where wk is the process noise at the kth step. We assume
wk is Gaussian with zero mean and known covariance Qk.

For time step k and position r, let us define an observation
variable zk(r) to be observation of either fx(r, kTs) or
fy(r, kTs). Provided that a buoy is deployed at rE , Eule-
rian flow observation at time step k is denoted by zEk (rE).
We use MT to convert the Lagrangian data collected from
an AUV to a spatial map of flow. Figure 1 illustrates how
MT mapping is formulated. (MT will be introduced in
Section 3.1.) Suppose the map of the flow field contains
P grid cells. Let rLj be a position that represents the jth
grid cell. Then, we denote flow observation based on the
Lagrangian data at time step k by zLk (r

L
j ), j = {1, · · · , P}.

For both Eulerian and Lagrangian observations defined
as zk = [zEk (rE), zLk (r

L
1 ), · · · , zLk (rLP )], the observation

equation at time step k is given by

zk = Hk(Θk) + vk, (4)

where observation noise vk is Gaussian with zero mean and
known covariance matrix Rk and matrix H is defined as

Hk(Θk) =




hk(r
E ,Θk)

hk(r
L
1 ,Θk)
...

hk(r
L
P ,Θk)


 , (5)

where hk(r,Θ) = h(r, kTs; Θ) defined in (2).

Even though state equation (3) is linear, we have nonlinear
observation equation (4), leading to a nonlinear filtering
problem for parameter estimation. To solve this nonlin-
ear filtering problem, we decouple spatial and temporal
parameter estimation and decompose a nonlinear filter
into two linear sub-filters. Then, we consider one set of
parameters as constant and solve the filtering problem for
the other set of parameters. Since Lagrangian data through
MT provide higher spatial variations than Eulerian data,
we use Lagrangian data to update spatial parameters and
Eulerian data to update temporal parameters.

3.1 Motion Tomography

MT estimates a flow field map from the motion-integration
error and trajectory information of the AUV. Suppose an
AUV travels in domain D (see Fig. 1) over observation
interval T = [t0, tf ] with no prior flow information and its
position is available only at time t0 and tf . Let us define
γ(t), t ∈ T as the vehicle trajectory. Then, the motion-
integration error over T is given by

d(γ, T ) =

∫ tf

t0
ṙ(τ, f)− ˙̃r(τ, f̃)dτ =

∫ tf

t0
f(r, t)dτ, (6)

where f(r, t) is real flow and prior flow information f̃ is
assumed zero.

After assuming time-invariant flow and substituting arc-
length parameter � for curve γ, given by

d� = str(f(r))dt, (7)

in which str is the speed of the vehicle along its actual
trajectory, we derive

d =

∫

γ

1

str(f(r))
f(r)d�. (8)

We discretize domain D into P =R×S grid cells with D(r,s)

referring to the (r, s)th cell and define index j = (r−1)S+s
such that Dj ≡ D(r,s), j = {1, · · · , P}. For the jth cell,
let us denote flow velocity by fj and assume a linear
trajectory. From r(t0), a vehicle trajectory within a cell
depends on flow along the trajectory up to the current
cell. Therefore, for trajectory γ of a vehicle traveling from

t = t0 to t = tfj , in which tfj is the time that the vehicle
leaves cell Dj , we define a set of indices for cells the vehicle
trajectory visits as κj = {n|[Dn] ∩ {γ(t)}t∈[t0,tf

j
] �= ∅} and

the length of a vehicle trajectory within Dj as Lj(fκj
).

Based on the above discretization, (8) can be rewritten as

d =
P∑

j=1

Lj(fκj )

str(fj)
fj . (9)

Separating the x and y components of flow, we have

dx =

P∑
j=1

Lj(fκj )

sjtr(fj)
fx,j , dy =

P∑
j=1

Lj(fκj )

sjtr(fj)
fy,j . (10)

Defining fx = [fx,1, · · · , fx,P ]T , fy = [fy,1, · · · , fy,P ]T , and

L(f) =

[
L1(fκ1

)

s1tr(f1)
· · · LP (fκP

)

sPtr(fP )

]
, (11)

we can rewrite (10) as

dx = L(f)fx, dy = L(f)fy, (12)

where f = [fTx , fTy ]T . The MT method creates a map of the
underlying flow field f by solving the motion-integration
error equations in (12) through an iterative process that
consists of trajectory tracing and flow field estimation (Wu
et al., 2013; Chang et al., 2016).

3.2 Spatial Parameter Estimation

Suppose the basis functions and the previous estimates of
parameters for (1) are known. Let us omit subscripts x and
y for simplicity of presentation. Given an estimated flow
field map computed through MT, we fix all the temporal
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parameters ρ using the previous estimates, ρ̂, and estimate
spatial parameters η. Then, in state vector Θ, η is the only
unknown. Let us define Φ(r) = [· · · , φm(r), · · · ]T , m =
{1, · · · ,M} and Ψ(t) = [· · · , ψn(t), · · · ]T , n = {1, · · · , N}.
Then, flow velocity can be expressed as

f(r, t) = ρ̂TΨ(t)Φ(r)T η (13)

which is linear in η. Suppose previous estimates of ρ
are computed at time step k − 1. Then, the state and
observation equations for spatial parameter estimation are

ηk+1 = ηk + wη
k (14)

zk = Hη
kηk + νηk , (15)

where wη
k is the process noise at the kth step, which is

Gaussian with zero mean and known covariance Qη
k and

Hη
k =



ρTk−1ΨkΦ(r

L
1 )

T

...
ρTk−1ΨkΦ(r

L
P )

T


 . (16)

Then, the filtering equations are given by

η̂−k = η̂+k−1

P η−
k = P η+

k−1 +Qη
k−1

Kk = P η−
k (Hη

k )
T (Hη

kP
η−
k (Hη

k )
T +Rη

k)
−1

η̂+k = η̂−k +Kk(zk −Hη
k η̂

−
k )

P η+
k = (I −KkH

η
k )P

η−
k (I −KkH

η
k )

T +KkR
η
kK

T
k ,

where η̂k is the optimal estimate of ηk.

3.3 Temporal Parameter Estimation

We use Eulerian data to update temporal parameters. In
contrast to the spatial parameter estimation, when Eule-
rian data are available, we fix all the spatial parameters η
using the previous estimates, η̂. Suppose Eulerian data are
available at time step k and previous estimates of η were
computed at �k/α�α. For temporal parameter estimation,
the state and observation equations are given by

ρk+1 = ρk + wρ
k (17)

zk = Hρ
kρk + νρk , (18)

where wρ
k is the process noise for ρ at the kth step, which

is Gaussian with zero mean and known covariance Qρ
k and

Hρ
k = ηT�k/α�αΦ(r

E)ΨT
k . (19)

For temporal parameter estimation, the filtering equations
are given by

ρ̂−k = ρ̂+k−1

P ρ−
k = P ρ+

k−1 +Qρ
k−1

Kk = P ρ−
k (Hρ

k )
T (Hρ

kP
ρ−
k (Hρ

k )
T +Rρ

k)
−1

ρ̂+k = ρ̂−k +Kk(zk −Hρ
k ρ̂

−
k )

P ρ+
k = (I −KkH

ρ
k )P

ρ−
k (I −KkH

ρ
k )

T +KkR
ρ
kK

T
k ,

where ρ̂k is the optimal estimate of ρk.

4. OBSERVABILITY ANALYSIS

Given a system with no control input, a Kalman filter
converges if the system is uniformly completely observable
(Jazwinski, 1970). We redefine uniform complete observ-
ability in Jazwinski (1970).

Definition 1. The linear system

Θk+1 = Θk + wk (20)

zk = HkΘk + νk (21)

is uniformly completely observable if there exist τ, β1, β2 >
0 such that the observability Gramian J (k, k − τ) =∑k

j=k−τ H
T
j R

−1
j Hj satisfies β1I � J (k, k − τ) � β2I for

all k > τ where the dimension of I is defined accordingly.
Here, Rj is the covariance matrix for noise νj .
Lemma 1. For n linearly independent nonzero vectors
ui ∈ Rn, M =

∑n
i=1 uiu

T
i ∈ Rn×n has full rank.

Proof. Consider nonzero vector v1 ∈ span{u2, · · · ,un}⊥.
Then, Mv1 = (u1u

T
1 )v1 = u1(u

T
1 v1) is a nonzero scalar

multiple of u1. Similarly, for vi ∈ span{uj}⊥j �=i, Mvi is
a nonzero scalar multiple of ui. In other words, nonzero
scalar multiples of each ui are in the range of M and the
dimension of the range ofM is n, which is equivalent toM
having full rank (c.f. Horn and Johnson, 1985, pg. 13).

In the following theorem, we prove uniform complete
observability for spatial parameter estimation:
Theorem 1. The system (14)–(15) is uniformly com-
pletely observable if the following conditions are met:
(Cd1) The matrix Rη

j is uniformly bounded for all j (i.e.,

β3I(P+1)×(P+1) � Rη
j � β4I(P+1)×(P+1) for some con-

stants β3, β4 > 0.
(Cd2) Among Φ(·)’s evaluated at the position of the buoy,
rE, and the positions of the grid cells, rLi , i = {1, · · · , P},
at least M Φ(·)’s are linearly independent.
Remark 2. Condition (Cd2) can be satisfied by choosing
spatial basis functions appropriately. Consider Gaussian
radial basis functions (GRBFs) indexed by m, φm(r) =

exp
(
−‖r−cm‖

2σ2

)
, where cm is the center and σ is the

width. If we use GRBFs as spatial basis functions for
Φ(r) = [· · · , φm(r), · · · ]T , m = {1, · · · ,M}, (Cd2) can be
satisfied by choosing M different centers.

Proof. For system (14)–(15), we have observability Gramian

Jη(k, k − τ) =
∑k

j=k−τ (H
η
j )

T (Rη
j )

−1Hη
j . From (Cd1), Rη

j

is positive definite and bounded above and below. There-

fore, we obtain β−1
4

∑k
j=k−τ (H

η
j )

THη
j � Jη(k, k − τ) �

β−1
3

∑k
j=k−τ (H

η
j )

THη
j for all k > τ . Next, we prove that∑k

j=k−τ (H
η
j )

THη
j is positive definite. We can compute

(Hη
j )

THη
j =



ρTj−1ΨjΦ(r

L
1 )

T

...
ρTj−1ΨjΦ(r

L
P )

T




T 

ρTj−1ΨjΦ(r

L
1 )

T

...
ρTj−1ΨjΦ(r

L
P )

T




=
(
ρTj−1ΨjΦ(r

L
1 )

T
)T

ρTj−1ΨjΦ(r
L
1 )

T + · · ·
+
(
ρTj−1ΨjΦ(r

L
P )

T
)T

ρTj−1ΨjΦ(r
L
P )

T

=
(
ρTj−1Ψj

)2[
Φ(rL1 )Φ(r

L
1 )

T +· · ·+Φ(rLP )Φ(r
L
P )

T
]
.

The quadratic scalar term
(
ρTj−1Ψj

)2
is always positive

unless the temporal component of flow is zero everywhere.
Let us define Mη = [Φ(rL1 )Φ(r

L
1 )

T + · · ·+ Φ(rLP )Φ(r
L
P )

T ].
All the terms inside the bracket are rank-one positive-
semidefinite matrices. From (Cd2) and Lemma 1, Mη has
full rank and is positive definite. Therefore, β5IM×M �
Mη � β6IM×M for some constants β5, β6 > 0.
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Remark 3. Suppose multiple AUVs collect Lagrangian
data. Regardless of the number of AUVs, the number of
grid cells does not change, preserving the dimension of
observation matrix Hη. Instead, using multiple AUVs will
increase the rate of visiting all the grid cells and the chance
of generating linearly independent Φ(·)’s. Therefore, the
uniform complete observability condition can be satisfied
in shorter time window than using just a single AUV.

In the following theorem, we prove uniform complete
observability for temporal parameter estimation:
Theorem 2. System (17)–(18) is uniformly completely
observable if (Cd1) and the following condition are met:
(Cd3) The sampling period Ts is chosen such that at least
N Ψj’s, j ∈ [k − τ, k] ⊂ N+ are linearly independent.

Proof. For system (17)–(18), we have observability Gramian

Jρ(k, k − τ) =
∑k

j=k−τ (H
ρ
j )

T (Rρ
j )

−1Hρ
j . From (Cd1), Rρ

j

is positive definite and bounded above and below. There-

fore, we obtain β−1
4

∑k
j=k−τ (H

ρ
j )

THρ
j � Jρ(k, k − τ) �

β−1
3

∑k
j=k−τ (H

ρ
j )

THρ
j for all k > τ . Next, we prove that∑k

j=k−τ (H
ρ
j )

THρ
j is positive definite. We can compute

(Hρ
j )

THρ
j =

[
ηT�j/α�αΦ(r

E)ΨT
j

]T [
ηT�j/α�αΦ(r

E)ΨT
j

]

=
(
Φ(rE)T η�j/α�αη

T
�j/α�αΦ(r

E)
)
ΨjΨ

T
j

The quadratic term in the parenthesis is always positive
unless the spatial component of flow is zero everywhere.

Let Mρ =
∑k

j=k−τ Ψ
T
j Ψj . From (Cd3) and Lemma 1, Mρ

has full rank and is positive definite. Therefore, β7IN×N �
Mρ � β8IN×N for some constants β7, β8 > 0.

Remark 4. The increased number of buoys will increase
the dimension of the observation matrixHρ. With multiple
buoys, by choosing locations of buoys such that the rank
of the observation matrix increases, the uniform complete
observability condition can be satisfied over a shorter time
window than using just a single buoy.

5. SIMULATION RESULTS

To show that the proposed method resolves temporal vari-
ations for MT, we compare two implementations of GEMs:
GEM-EL assimilating both Eulerian and Lagrangian data
and GEM-L assimilating Lagrangian data only. We use a
data-driven computational model in (1) as a GEM. For
spatial basis functions, we use GRBFs. For temporal basis
functions, we decompose ocean flow into tidal and non-
tidal components. Then, we use a series of sinusoidal basis
functions as temporal basis functions for tidal flow and
weighted Laguerre polynomials as those for non-tidal flow.

Flow model (1) is initialized by using a month-long set
of post-processed historic HF-radar data with 3 × 3 km2

spatial resolution and one hour temporal resolution. In our
simulation, one hour corresponds to one time step. For
the HF-radar data, N = 3 major constituents are used to
generate temporal basis functions for the tidal component.
For the non-tidal component, we use 0th to 4th order
(L = 5) Laguerre polynomials as temporal basis functions.
To account for spatial variations, M = 5 GRBFs are

0 10 20 30 40 50 60

time step

-0.2

-0.1

0

0.1

0.2

fl
o
w

 v
e
lo

c
it
y
 [
m

/s
]

(a) x component of flow.

0 10 20 30 40 50 60

time step

-0.2

-0.1

0

0.1

0.2

fl
o
w

 v
e
lo

c
it
y
 [
m

/s
]

(b) y component of flow.

Fig. 2. Time-series Eulerian flow data for 60 time steps.

used. After the model initialization, we select a segment
of HF-radar data over the period followed by that of the
initialization data to simulate the “true” flow field, which
is constructed by real sea surface flow observation data
from November 9, 2011 11:53pm. A buoy is deployed at
location (0, 0) in the domain of the simulated field. Figure
2 shows time-series flow measured by the buoy.

For estimation of the flow model parameters, we randomly
generate initial parameters from the uniform distribution
on [−0.5, 0.5]. We assume buoy data are available every
time step. Around the buoy, an AUV travels across the
buoy every time step, criss-crossing the domain. Since the
most dominant tidal constituent for the simulated flow
field has a period of 12.42 hours, to reduce the influence
of temporal variations of flow from the mapping results,
we create a P = 6× 6 grid map of flow through MT every
α = 12 time steps. Then, we update parameters using the
proposed method with Qρ

k = 10−2I(L+2N+2)×(L+2N+2),

Qη
k = 10−2IM×M , Rρ

k = 10−4I1, and Rη
k = 10−4IP .

We compute the error between the simulated “true” flow
fields and the estimated flow fields. Then, spatial mean of
the square root of the errors are computed (see Fig. 3).
Since Lagrangian data are assimilated after the first 12
time steps, we compute errors from k = 12. Since GEM-
EL incorporates both spatial and temporal variations of
flow, overall it shows lower values and smaller variance of
the errors than GEM-L. Temporally averaged errors are
displayed in the figures. Over the period, the results show
that GEM-EL has 10 percent lower error and validates
that our method resolves temporal variations for MT.

To demonstrate the effectiveness of the proposed method,
we simulate two virtual mooring vehicles: one guided by
GEM-EL and the other by GEM-L. Both vehicles are
deployed at (0, 0), and after time step k = 12, they
start attempting to cancel the flow using flow estimates
by either GEM-EL or GEM-L until k = 60. Here, we
assume that perfect flow cancellation is possible. Figure 4
shows the trajectories of both vehicles. The vehicle guided
by GEM-EL (the blue line) successfully stays within a
region close to the origin. However, with no knowledge of
temporal variation of flow, the vehicle guided by GEM-L
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Remark 3. Suppose multiple AUVs collect Lagrangian
data. Regardless of the number of AUVs, the number of
grid cells does not change, preserving the dimension of
observation matrix Hη. Instead, using multiple AUVs will
increase the rate of visiting all the grid cells and the chance
of generating linearly independent Φ(·)’s. Therefore, the
uniform complete observability condition can be satisfied
in shorter time window than using just a single AUV.

In the following theorem, we prove uniform complete
observability for temporal parameter estimation:
Theorem 2. System (17)–(18) is uniformly completely
observable if (Cd1) and the following condition are met:
(Cd3) The sampling period Ts is chosen such that at least
N Ψj’s, j ∈ [k − τ, k] ⊂ N+ are linearly independent.

Proof. For system (17)–(18), we have observability Gramian

Jρ(k, k − τ) =
∑k

j=k−τ (H
ρ
j )

T (Rρ
j )

−1Hρ
j . From (Cd1), Rρ

j

is positive definite and bounded above and below. There-

fore, we obtain β−1
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j=k−τ (H
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j for all k > τ . Next, we prove that∑k
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The quadratic term in the parenthesis is always positive
unless the spatial component of flow is zero everywhere.

Let Mρ =
∑k

j=k−τ Ψ
T
j Ψj . From (Cd3) and Lemma 1, Mρ

has full rank and is positive definite. Therefore, β7IN×N �
Mρ � β8IN×N for some constants β7, β8 > 0.

Remark 4. The increased number of buoys will increase
the dimension of the observation matrixHρ. With multiple
buoys, by choosing locations of buoys such that the rank
of the observation matrix increases, the uniform complete
observability condition can be satisfied over a shorter time
window than using just a single buoy.

5. SIMULATION RESULTS

To show that the proposed method resolves temporal vari-
ations for MT, we compare two implementations of GEMs:
GEM-EL assimilating both Eulerian and Lagrangian data
and GEM-L assimilating Lagrangian data only. We use a
data-driven computational model in (1) as a GEM. For
spatial basis functions, we use GRBFs. For temporal basis
functions, we decompose ocean flow into tidal and non-
tidal components. Then, we use a series of sinusoidal basis
functions as temporal basis functions for tidal flow and
weighted Laguerre polynomials as those for non-tidal flow.

Flow model (1) is initialized by using a month-long set
of post-processed historic HF-radar data with 3 × 3 km2

spatial resolution and one hour temporal resolution. In our
simulation, one hour corresponds to one time step. For
the HF-radar data, N = 3 major constituents are used to
generate temporal basis functions for the tidal component.
For the non-tidal component, we use 0th to 4th order
(L = 5) Laguerre polynomials as temporal basis functions.
To account for spatial variations, M = 5 GRBFs are
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Fig. 2. Time-series Eulerian flow data for 60 time steps.

used. After the model initialization, we select a segment
of HF-radar data over the period followed by that of the
initialization data to simulate the “true” flow field, which
is constructed by real sea surface flow observation data
from November 9, 2011 11:53pm. A buoy is deployed at
location (0, 0) in the domain of the simulated field. Figure
2 shows time-series flow measured by the buoy.

For estimation of the flow model parameters, we randomly
generate initial parameters from the uniform distribution
on [−0.5, 0.5]. We assume buoy data are available every
time step. Around the buoy, an AUV travels across the
buoy every time step, criss-crossing the domain. Since the
most dominant tidal constituent for the simulated flow
field has a period of 12.42 hours, to reduce the influence
of temporal variations of flow from the mapping results,
we create a P = 6× 6 grid map of flow through MT every
α = 12 time steps. Then, we update parameters using the
proposed method with Qρ

k = 10−2I(L+2N+2)×(L+2N+2),

Qη
k = 10−2IM×M , Rρ

k = 10−4I1, and Rη
k = 10−4IP .

We compute the error between the simulated “true” flow
fields and the estimated flow fields. Then, spatial mean of
the square root of the errors are computed (see Fig. 3).
Since Lagrangian data are assimilated after the first 12
time steps, we compute errors from k = 12. Since GEM-
EL incorporates both spatial and temporal variations of
flow, overall it shows lower values and smaller variance of
the errors than GEM-L. Temporally averaged errors are
displayed in the figures. Over the period, the results show
that GEM-EL has 10 percent lower error and validates
that our method resolves temporal variations for MT.

To demonstrate the effectiveness of the proposed method,
we simulate two virtual mooring vehicles: one guided by
GEM-EL and the other by GEM-L. Both vehicles are
deployed at (0, 0), and after time step k = 12, they
start attempting to cancel the flow using flow estimates
by either GEM-EL or GEM-L until k = 60. Here, we
assume that perfect flow cancellation is possible. Figure 4
shows the trajectories of both vehicles. The vehicle guided
by GEM-EL (the blue line) successfully stays within a
region close to the origin. However, with no knowledge of
temporal variation of flow, the vehicle guided by GEM-L
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Fig. 3. Spatial mean square error.
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Fig. 4. Virtual mooring vehicles.

(the orange line) fails to stay close to the origin. These
results show that the resulting GEM can improve the
navigation accuracy for AUVs.

6. CONCLUSION AND FUTURE WORK

This paper presents a method for assimilating both La-
grangian and Eulerian data into a data-driven computa-
tional flow model constructed as a generic environmental
model (GEM). In the proposed method, Lagrangian data
are processed through our motion tomography method
to create a spatial map of flow. Due to the coupling be-
tween temporal and spatial components in the flow model,
temporal and spatial parameter estimation for the GEM
falls into a nonlinear filtering problem. By solving this
nonlinear filtering problem using two linear sub-filters,
our method estimates temporal parameters using Eule-
rian data and spatial parameters using Lagrangian data.
Assimilation of both data streams improves a GEM by
resolving temporal variability for MT and the resulting
GEM increases the navigation performance of AUVs.
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