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Abstract—Controlled Lagrangian particle tracking (CLPT) is
a feedback control methodology for autonomous underwater
vehicles (AUVs) in dynamic ocean environments that can reveal
information about ocean flow and model error through the
operation of AUVs. From CLPT, we evaluate the navigational
performance of AUVs with controlled Lagrangian prediction
error (CLPE), which represents the difference between the
predicted and true trajectories of AUVs. In this paper, using
CLPE, we develop an adaptive learning algorithm that allows
AUVs to learn their true motion in ocean flow fields in real time.
While previous work shows that CLPE increases over time in
simulated and field experiments, the proposed algorithm forces
CLPE to converge to zero so that the vehicle motion model
is unique and flow fields can be identified. For the robustness
of the proposed algorithm, we prove that CLPE is ultimately
bounded under disturbances. The proposed algorithm is verified
by simulation results.

I. INTRODUCTION

Over the past decades, autonomous underwater vehicles
(AUVs) have proven to be valuable sensing platforms in a
variety of scientific and practical missions [1]: oil spill survey
[2], acoustic mapping [3], and ocean sampling [4], among
many others. High navigational performance of AUVs is
essential for persistent and efficient collection of information-
rich data [5], and serious performance degradation can result
when flow speed is comparable to or exceeds AUV forward
speed, as is the case for underwater gliders [6], [7].

Controlled Lagrangian particle tracking (CLPT) is a feed-
back control methodology for AUVs moving in dynamic ocean
environments [8], [9] that has been demonstrated to reveal
information about the flow field through which the vehicles
move. In contrast to passive Lagrangian methods, an AUV
is viewed as a controlled Lagrangian particle in the sense
that AUVs are not freely advected by ocean flow. To track
the controlled Lagrangian particle, we generate the predicted
trajectory of the AUV by simulating vehicle motion models
composed of incorporated flow models and controllers. Then,
we compare the predicted trajectory with the measured true
trajectory of the AUV. The discrepancy between the two
trajectories shows the tracking performance of the controlled
Lagrangian particle, called controlled Lagrangian prediction
error (CLPE). CLPE is a crucial measure that can be inter-
preted as the navigational performance of AUVs.
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In this paper, we present an adaptive learning algorithm
for controlled Lagrangian particle tracking. Previous work [8],
[9] shows that CLPE can increase over time in simulated and
field experiments because of inaccurate flow models included
in the simulated motion models. Since CLPE represents the
accuracy of the simulated motion models, the proposed al-
gorithm employs learning models instead of the simulated
models, and updates the learning models according to CLPE
so that both the learning models and the vehicle motion model
are identical.

Many researchers have developed path-planning algorithms
to improve navigational performance of AUVs against com-
plex ocean flows [10]-[12]. By assuming that the true flow
field is well-represented by ocean models [13], [14], the path-
planning algorithms generate reference trajectories through
off-line computation on shore. Waypoints corresponding to the
reference trajectories are commanded to the AUVs in the field.

However, “true” ocean flow fields are unknown, and ocean
models can have significant error due to unknown or under-
constrained boundary conditions, initial conditions, or missing
physics [15], [16]. Thus, we cannot guarantee that true trajec-
tories of AUVs are the same as the reference trajectories gener-
ated by path planning algorithms. Alternately, Lagrangian data
assimilation schemes [4], [7], [17] and glider computerized
tomography algorithms [18], [19] can be used to address
the better identification of ocean flow using AUV-derived
observations of the flow field. Such algorithms focus on
updating flow models and mapping flows, and the algorithms
can be complementary to our results.

For on-line learning models, we design two controllers,
a motion controller and a learning controller. The first is
designed for the motion of AUVs, and is composed of constant
feedforward and feedback gains, plus a flow canceling term
that uses a parametric flow model with known parameters. The
second controller is designed to learn the motion of AUVs.
In this learning controller, feedforward and feedback gains,
learning parameters, and parameters of the flow canceling term
are adapted by the proposed learning law based on CLPE.
These controllers allow AUVs to learn their actual motion
while identifying the ocean flow field.

We organize this paper into the following sections: Section
IT describes the problem setup introducing the vehicle mo-



tion model, the learning model, flow models, and the state
feedback controllers with flow canceling. Section III presents
the adaptive learning algorithm, and analyzes robustness of
the proposed algorithm. Section IV presents the simulation
results that show the verification of the theoretical analysis,
and Section V provides conclusions.

II. PROBLEM FORMULATION

We present an adaptive learning algorithm using the frame-
work of controlled Lagrangian particle tracking. To formulate
the learning problem of AUVs influenced by the uncertain
ocean flow, we describe the vehicle motion model, the learning
model, flow models, and state feedback controllers.

A. Vehicle motion model

Let D C R? be a domain. Then let F(x,?) be a deterministic
ambient flow velocity, where F:D x [0, o] — R?. Let v be a
through-water velocity, or the controlled velocity of the AUV,

where v:D x [0, o] — R2,
‘Z‘ Fr(x,1) +v(x,1,2:(1)). 1)

Subscript R for the flow F denotes a real ocean flow. F¢ and v
are locally Lipschitz in x = [x1, x2] " € D. x is the true position
of the AUV. z.(t) = [z1¢(t), 22¢(¢)] " is the desired trajectory
of the AUV.

B. Learning model

Learning models are used for generating the simulated
positions of the vehicle. When we define z(¢) as the simulated
position of the vehicle from a learning model, the trajectory of
the vehicle is generated by integrating the following learning

model: d
z
E :FM(Z,I)+V(Z7taZC(t))’ (2)

where subscript M for the flow F is a modeled flow.

C. Flow models

Flow fields can be represented by spatial and temporal basis
functions [20]. We consider that spatial and temporal basis
functions are the combination of Gaussian radial and tidal
basis functions, respectively. Let N be a positive integer, and 0,

o € RPN Let ¢:D x [0, 0] — R be [¢!(x,7), -+~ ¢V (x,1)] .

FR(th) = 9¢(Xat) (3)

FM(th) = aM‘P(th)) (4)
where
_ 0, _ 911 G{V _lam | ajbl aﬁlzl
Q_M_{@z' oM oy, | T e, ey
The combined basis functions are

. _ lx=¢ll

¢)’(x,t):exp i COS((D,'[), (5)

where ¢; is the centers, o; is the widths, @; tidal frequencies,
andi=1,---,N.

D. State feedback controllers with flow canceling

The flow canceling strategy is to cancel out flow velocity
by controlling the heading angle of AUVs [9]. With the
flow canceling strategy, we design two types of controllers
as the combm&tl((;r)l of fegtdb(%:k and f&%d(ftcsrward structures.

1 — 1 1
Let of(t) = (Xz(t)} = [%(t) aN(t)]' Let Ky(t) =
diag (K, (1), K (1]}, and Tiy(1) = diag (T, (1).T (1)} be
diagonal matrices with time varying parameters. Let Kp =
diag{Kp,,Kp,}, and I'p = diag{I'p,,I'p, } be diagonal matri-
ces with desired fixed parameters. Let ¥/ (¢) € R? is a learning
injection parameter. Then,

v(z,t,2.(t)) = —a(t)9(z,t) — Ky (8)z+ Ty (1) 2 (1) + PL(2)
(6)

V(X,Z,ZC(I)>:—aM¢(X,l)—KDX+FDZC(l>. 7

The learning controller represented by equation (6) contains
(in order) a flow canceling term, a positional feedback term,
a feedforward term, and a learning injection term with time
varying parameters. By plugging equations (6) and (4) into
equation (2), the closed loop dynamics under the learning
controller is

2= (o — (1)) 9(2,1) = Ky ()2 + T (1)2e(1) +WL(1). (8)

Meanwhile, the closed loop vehicle dynamics under the vehi-
cle controller represented by equation (7) is

x=(0—an)o(x,r) — Kpx+Tpz.(t) )

when we plug equations (7) and (3) into equation (1). If
x and z have the same initial condition and «(r) = oy,
KM(I) = Kp, FM(Z) =TIp, and lI’L(l‘) = (9 — OCM)¢(X,Z), the
learned trajectory is identical to the vehicle trajectory because
of closed-loop dynamics. Our goal is to design the learning
controller and the learning injection parameter so that the
closed loop dynamics of the learning controller follows that
of the vehicle controller.

E. Controlled Lagrangian prediction error

To develop the learning controller that makes the simulated
trajectory follows the true trajectory in the ocean flow field,
we first derive controlled Lagrangian prediction error (CLPE)
dynamics that models how much the true trajectory is deviated
from the simulated trajectory. By subtracting equation (8) from
equation (9), CLPE dynamics is represented by

e=X—12
=(0—om) o(x,t) — (s — 0(t)) ¢ (z,t) — Kpx+Tpz. (1)
+Ku (t)2—Tar(1)2c () =W (1)
= (6 —aum) o (x,1) — (o — (1)) 9(2,1) + (Ku (1) — Kp) z
—KDe+(FD—FM(t))zC(t)—‘I‘L(t).
(10)
For example, if a(r) = oy, Ku(t) = Kp, Tm(t) =I'p, and

Y. (1) = (6 —om)9(x,t), CLPE goes to zero over time, which
implies that the simulated trajectory follows the true trajectory.
Our goal is to design a learning law for updating parameters



o(t), Ky (1), and T'ys () by using CLPE dynamics so that CLPE
converges to zero.

III. AN ADAPTIVE LEARNING ALGORITHM

To design an adaptive learning algorithm for controlled
Lagrangian particle tracking, we need some definitions and
assumptions.

Definition 3.1 [21] Signal u is persistent exciting if there
exist positive constants kj, k», and 7 such that xp/ >
ZHT u(s)u' (s)ds > 11 Vt.

Assumption 3.1 7. is a persistent exciting signal.

Assumption 3.2 Kp, or the feedback gain matrix of equation
(8), is positive definite.

Assumption 3.3 Let 0 be the estimate of 6. || (6— é) P is
bounded by flow velocity fmax-

Remark 3.1 z. is bounded because of persistent excitation.
Remark 3.2 Since 6 is a unknown constant matrix, we can
estimate 0 using the Kalman filter and the motion tomography
algorithm. We assume ||@ — | can be bounded from those
algorithms.

Remark 3.3 Positive definite matrix Kp is required for the
vehicle controller with negative state feedback.

A. Using a flow model

This section addresses a learning controller that uses avail-
able modeled flows. We consider a(t) = oy, which is avail-
able modeled flow. Then the CLPE dynamics from equation
(10) becomes

e = (9 — OCM) ¢(X,Z) —Kpe+ (KM(I) —KD)Z
+ (Fp = (1)) 2 (1) — WL(2)

Let KM(I) = [KMI (t)v KMZ(I)]T and f‘M = [FMI (t)7 FMz(I)}T
be two dimensional vectors with time-varying parameters. Let
Kp=[Kp,,Kp,]", and Tp = [['p,, Ip,]" be two dimensional
vectors with desired fixed parameters. Let Z = diag{z;, 22},
and Z. = diag{z., 22} be diagonal matrices. Let v be any
positive constant. We design learning parameter injection as
follows:

(1)

Wi (1) = (0 —om)d(x,1).

We have no knowledge of true flow parameter 6. When we
use estimate 6 from known algorithms (e.g., Kalman filtering
[17] or motion tomography [18]):

Y. (1) = (é — o) (x,1).

We design a learning law for time-varying parameters Ky, and
Iy by the following equations.

I?M(f) =
fM(l) =

12)

13)

(14)
15)

,ﬁTe
Vi, e
Theorem 3.1 Under assumptions 3.1, 3.2, and 3.3, and using
equations (13), (14), (15), CLPE is ultimately bounded by

1 ~
le]| < Ell (6—0)o(x,1)| (16)

where (L < Amin (Kp).

Proof. Consider a candidate Lyapunov function:

V(e,KM,fM) ;{CTE+ 71/ ([ZM *KD)T ([ZM 712[))
L (17)
+ (o —Tn) (rDrM)}.

The derivative of V is

V=—e"Kpete' (0—oy)d(x,r)—e ¥,
_ _ 1. _ - 1.

+ (KM —KD)T (yKM—&—ie) + (FD —FM)T (icTe— FM) .
18)
By assumption 3.2 and wusing equation (13), (14),
and (15, V = —e'Kpe + e’ (6—6)¢(x,r). Then,
V < — (Amin(Kp) — 1) [le]|* + [le[|]] (6 — 8) o (x.0)[| — e
When |e|| > ﬁH(GfG)(j)(x,t)H given positive constant
1 < Amin (Kp), V < — (Amin(Kp) — 1) [[e][>. This mean V is
not positive. Thus, [le[| < ]| (6 —8) ¢(x.1)]. O

Remark 3.3 Theorem 3.1 shows that CLPE is bounded by
estimated error of flow velocity as expected. Hence, the
convergence of theorem 3.1 is completely determined by the
accuracy of 6, which depends on the convergence of known
algorithms (Kalman filtering, motion tomography [17], [18]).
The following sections describes another learning algorithm
that includes learning flows so that CLPE converges to zero.

B. Learning flow
We rewrite equation (10) as follows:

e=(0+a(t)¢(x.t)+ (Ku(t) —Kp)z+ (Ip —Tu(t))zc(t)
—Kpe—Y.(1) — (o + (1)) (x,1) — (o — (1)) 9 (2,1).

L (19)

Let 6, @ and ep' € R?™ be row vectors.

That is, d(t) = [a]l(t)7"'aaiv(t)aazl(t)f"vaé\,(t)]y

M = [Oll(t)7"'76?/0)7921(1‘)7'”765\/0)]’ and

ep” = [e191,- e19n,e201,--,e29n]".  We design a

learning parameter injection as follows:

WL(t) = — (o +a (1)) 9 (x,1) — (o — (1)) ¢ (z,1).  (20)
We design a learning law for time-varying parameters

&) = —vedl(x1) 1)

Ku(t) = -yi'e (22)

Tu(t) = vile (23)

Theorem 3.2 Under assumptions 3.1 and 3.2, and using
equations (20), (21), (22), and (23), CLPE converges to zero
when time goes to infinity.



Proof. Consider a candidate Lyapunov function:
V(e7 aakMan)

;{e e+y(91+a1())(91+a1(t))T

+71,(92+062(l)) <ez+az<r>f+§<KM—KD>T<KM—KD>

1 - _ _ _
+ ;/ (FD —FM)T (FD —FM) }
(24)

The derivative of V is
V=—e"Kpete' (0+a)p(x,t)—e" ¥, —2e" oyo(x,1)

+(Ry—Kp)" (;I*(M+ze>+(rp Tu)' (Te—;,fM>
ro(6ra)a
Y

_ (25)
We know e’ (6 +0a)¢ = (6+a)e¢p'. Then, under assump-
tion 3.2 and using equation (20), (21), (22), and (23),

V=—e Kpe<O. (26)

V is negative semi-definite and this implies that e, a, Ky, and
Iy are bounded. In addition, the second order time derivative
of V satisfies V = —2e'Kpé = —2e"Kp{(0+a) o (x,t) —
Kpe+ (KM([) —KD)Z+ (FD — FM([))ZC — lPL(l‘) — Zan)(x,t)}.
From equation (20), ¥ is bounded. By assumption 3.1, z.
is bounded, and z is bounded because equation (8) represents
linear systems with sinusoidal inputs. In addition, Kj, and I'y,
are bounded. Thus, V is bounded, and hence V is uniformly
continuous. By Barbalat’s lemma in [22], [23], e — 0 when
t — oo, O

Theorem 3.3 Under the same setting of theorem 3.2, &, Ky,
and T'; converges to —0, Kp, and I'p, respectively.

Proof. In order to identify the ocean flow field from the
proposed learning control law, we prove the convergence
of parameters a, KM, and Ty. Let M1, M2, N3, and M4 be

(61 + Ocl) (6, + (xz) KM Kp, and T'p — Ty, respectively.
_ | ¢1 0
Let ¢ = [0 0 and ¢, = ¢2 é\, be in

R>*N. We rewrite equation (19) using equation 1y, M2, 13,
and n4 as follows:

e =0, (x,0)N + §a(x,1)N2 + %13 — Kpe + z.1s. (27)

We augment e, 1y, 12, N3, and 74 to new state variable X.
Then

~Kp & 7
—y$py 0 0 0 O
X=A)X, Al)=|-y)» 0 0 0 0
-~y 0 0 0 0
—vz. 0 0 0 O (28)
I 00 00
00000
Y=CX, C=1y 0 0 0 0
00000

Our goal is to show the origin of X = A(f)X is uniformly
asymptotically stable, which implies that & = —0, Ky = Kp,
and Ty = I'p. By theorem 3.4.8 in [24], a necessary and
sufficient condition is that there exist a symmetric matrix P
such that ¢;I <P < ¢yl and ATP+PA+P+vCTC <0 are
satisfied V¢ and some constant v > 0, where ¢; >0, and ¢; >0
and C is such that (C,A) is a uniformly completely observable.

6% 1 0_1 0 0 0
0 3Kp 0 0 0
LetP=| O 0 5K, 0 0 |.LetV
1 p—1
0 0 0 3K 1 0 1
0 0 0 0 £Kp

be X " PX. Then,
V' =XT(A"TP+PTA+P)X <—vX'CTCX =—V|Y|? (29

where P = 0.

Now we will prove (C,A) is a uniformly completely ob-
servable. Because it is hard to prove the observability of time
varying system matrix A, we will instead show (C,A + LC)
is uniformly completely observable with some bounded ma-

trix L, called output injection by lemma 4.8.1 in [24]. Let
Kn 0 0 0 O

Yo 0 0 0 0
L=|ypo 0 0 O Of. Since x and z. are bounded, and
Y2 0 0 0 O
Y2. 0 0 0 O
¢ is a sinusoidal function with exponential magnitude, L is
0 ¢ ¢ 7 7
0 0 0 0 O
bounded. Then, A+LC= [0 0 O O O]. Thus,
0 0 0 0 O
0 0 0 0 O
X=AX=(A+LC)X—LY
(30)
Y =CX.
Let n = [Th, N2, N3, T]4]T, and w = [(51, (]32, VA iC]T. We have
the following equation corresponding to equation (30).
€= —KDe+w n
n= (3D
Y =

Because Z. is persistent exciting, Z is bounded, and ¢; and
¢, are sinusoidal functions, w is persistent exciting. Let
®(¢) = [Fexp Ko(=C)yw(¢)d{. By lemma 4.8.3 in [24], ®({)
satisfies persistent exciting conditions because of a stable,
minimum phase, proper rational transfer function (sl +
Kp). Therefore there exists constant p;, P2, Tp > 0 such
that pp/ > fH'TO (L)@ (&)dE > pil Yt > 0. By applying
lemma 4.8. 4 in [24] to the system of equation (31), (C,A+LC)
is uniformly completely observable; hence, the system of
equation (28) is uniformly completely observable. Therefore,
&, Ky, and Ty converge to -0, Kp, and Tp, respectively. [



C. Inaccuracy in flow modeling

Although the basis functions well capture the spatial vari-
ability of ocean flow in a specific region, the functions still
include deterministic errors induced by the variability out of
the region. In this section, we address the robustness of the
proposed adaptive learning algorithms.

We show the boundedness of CLPE when the true flow
model has unknown disturbances such as unstructured un-
certainties. We assume Fg(x,7) = 0¢(x,t) + A, where ||A|| is
bounded by Apax. Then,

e=(0+a(t))o(x,1)+ (Ky(t)— Kp)z—Kpe
+ (FD —FM(Z‘))ZC-i-A.

Theorem 3.4 Under the same setting of theorem 3.2, the bound
of CLPE is

(32)

1
p

where the positive constant 8 < Auin(Kp).

lefl < = 1Al (33)

Proof. Let V be the Lyapunov function represented by equa-
tion (24). By using equation (32), the derivate of V is

. _ _ 1 -
V= —eTKDe +e A+ (K — KD)T <YKM + ie)
T 1 (1. ——
+(Tp—Twm) (z'e—=Twm)+-(6+a)(-d&+ep'(x,1)
Y Y Y
(34
Then, we plug the adaptive law represented by equations (20),
(21), (22), and (23) into equation (34). Then,
V=—e'Kpet+e' A
—Amin(Kp)e e+e' A
Awin(KD)le[1* + [le]| A
(Amin(Kp) = B) llel|* + llell|A] - Blle]®
When ||e|| > %HAH given positive constant § < Amin(Kp), V <
— (Amin(Kp) — B) ||e||>, which means V is negative definite.
Thus, CLPE is bounded by [le]| < g||A]l. O

IV. SIMULATION RESULTS

<
P (35)
<
<

In this section, we describe simulation results for the pro-
posed learning algorithm. We choose 3 spatial and 3 tidal basis
functions to represent 2D ocean flow along each of the two
directions. 6;, which represents true flow parameters along the
horizontal direction, is [1.0 0.4 0.8]. 6,, which represents three
flow parameters along the vertical direction, is [0.9 0.4 0.8].
The three combined basis functions are represented by center
¢i, width o;, and tidal frequency @;, where i = 1,2,3. ¢y,
c2, and c3 are [0,0]", [10,10]", and [5,5]", respectively. oy,
02, and o3 are all equal to 5. We select three frequencies to
represent tides, the M5 lunar semidiurnal (period=12.42 hours),
and two fictional frequencies with periods at intervals higher
and lower than the M, (10.42, 24.42 hrs). Feedback gain of
the vehicle controller, Kp is diag{1,1}. I'p is the same as Kp,
and all parameters in the learning algorithm are initialized at

0. Adaptation speed, or 7 is designed as 0.8. We consider 10
waypoints generated from z. = [rcos®, rsin®]" with r = 3,
and © = Z| ;. Figure 1 represents waypoints of the AUV.
The AUV completes a cycle when it sequentially travels nine
waypoints counter-clock direction from starting at waypoint
(3,0), and arrives back at waypoint (3,0).

Waypoints

S O Origin il
//////”////ﬂ/
NS
VoSS A
A A A A A
= VoSS S

w

E o s s A A A A
o L S A A P

Ao,
VSIS SIS S
DV S SI SIS SIS A
VoSS ISP S
N O L PR P Iry
-4 -2 0 2 4
X [m]

Fig. 1. An AUV starts to go to the waypoint (3,0) from the origin, and
then keeps moving the next waypoint counter-clockwise direction. Arrows
represents ocean flow at the initial time. Flow direction changes over time
according to the tidal basis functions.

Figures 2, 3, 4 shows simulation results of CLPE and six
flow parameters. CLPE goes to zero over 200 seconds (10
intervals), which is about one cycle. Moreover, the six flow
parameters converges to their true flow parameters. Feedback
and feedforward gains converge to the gains of desired con-
troller with the similar trend of flow parameters. These results
support our theoretical analysis in the previous section.

CLPE
1.4 : ; : : ;
—e—X-axis

1.2t ——Y-axis| |
A

— 1}

<

E 0.8+

P

_~06}

v

s 0.4}

3

~ 02}

0 aSa. a2,
0 5 10 15 20 25 30

Interval

Fig. 2. CLPE: Each unit represents time interval of 20 seconds. 10 interval
represents one cycle. Over one cycle, CLPE error is significantly reduced, and
CLPE converges to zero.

V. CONCLUSION

We have developed an adaptive learning algorithm for con-
trolled Lagrangian particle tracking (CLPT) that improves the
ability of an AUV to sense the flow field in which its operates
by incorporating the its navigation error. This improvement



Estimated(Solid), True(Dashed)

—1st paramter
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Fig. 3. Parameters for horizontal flow converges to true values.

Estimated(Solid), True(Dashed)

——1st paramter
——2nd parameter
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Flow Parameters in Y-axis

300 500
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0 100 200 400 600

Fig. 4. Parameters for vertical flow converges to true values.

accelerates convergence in the estimation of flow as well
as controller gains convergence to true gains. Furthermore,
we prove that the algorithm guarantees controlled Lagrangian
prediction error (CLPE) converges to zero with time. To
address the robustness of the algorithm, we show that CLPE is
ultimately bounded in terms of unknown disturbance in ocean
flow.

No AUV is a perfect navigator; each is limited in its
ability to navigate because of limits to propulsion mechanisms
and self-localization. Future work will develop algorithms
that address boundedness of the problem when the controlled
velocity is saturated and develop learning algorithms when the
localization service is infrequent.
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