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Discretized Boundary Methods
for Computing Smallest Forward Invariant Sets™*

Paul Varnell', Shayok Mukhopadhyay?, and Fumin Zhang?

Abstract— This paper presents a multi-dimensional method
to compute forward invariant sets (FIS) that are tight approx-
imations of the smallest FIS of nonlinear perturbed systems
modeled by differential inclusions. We formulate the problem
as a discretized optimal boundary search, using methods from
computational topology and non-smooth analysis to ensure
invariance constraints for piecewise linear boundaries of FIS.
We solve this optimal boundary search problem using a greedy
search method with backtracking to find the optimal boundary,
which defines the smallest FIS that can be represented in the
discretized search space.

I. INTRODUCTION

There are many important examples of control systems
with strict safety and performance requirements that must be
met in spite of the presence of uncertainties. For example,
teleoperated surgery, industrial robots cooperatively working
with humans, and aircraft flight controls are all systems
where the violation of certain constraints could result in de-
struction of expensive equipment or even loss of human life.
These examples also require exceptional control performance
in order to accomplish their intended purpose. Achieving
both safety and performance is made more difficult by uncer-
tainties in the environment resulting from human operators
and other complex unmodeled dynamics.

Controllers for these kinds of systems need to guarantee
that state constraints are not violated, without sacrificing
potential performance due to overly conservative estimates.
Forward invariant sets (FIS) provide a general way to analyze
state constraints for perturbed systems [1]. An FIS of a sys-
tem is a subset of the state space that trajectories will never
leave. FIS are most commonly used in Lyapunov analysis,
where the sublevel sets of a Lyapunov function are FIS
containing an equilibrium point of an unperturbed system.
Input-to-State Stability (ISS) techniques [2], [3] are used to
find FIS for perturbed systems. However, given bounds on
the perturbation, ISS methods typically will not find tight
approximations of the smallest FIS. Tighter estimates on the
smallest FIS allow us to use higher performance controllers
while still ensuring that state constraints are satisfied under
given assumptions about the perturbations.

This paper proposes a computational technique to find
FIS that are tight approximations of the smallest FIS of
perturbed systems. This is the first method capable of this
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for perturbed nonlinear continuous-time systems with any
finite number of state dimensions. We formulate this problem
as a discretized optimal boundary search, and use methods
from computational topology and non-smooth analysis to
enforce invariance constraints for piecewise linear boundaries
of FIS. We solve this optimal boundary search problem
using a greedy search method with backtracking to find the
optimal boundary, which defines the smallest FIS that can
be represented in the discretized search space.

Invariant sets have a long been used to design and analyze
perturbed systems [1]. There are existing algorithms for
computing FIS for discrete-time [4] and continuous-time [5]
linear systems. There are also a large number of algorithms
for computing finite-time and infinite-time reachable sets
[6]-[8], including optimization based methods [9]-[11], level
set and boundary propagation methods [12], [13], and trajec-
tory tube approaches [14]-[16]. Additionally, there are a few
related algorithms for computing regions of attraction [17].

For autonomous systems, smallest FIS are essentially the
same as infinite-time reachable sets. However, reachable
set algorithms are not ideal for computing FIS. Infinite-
time reachable set algorithms produce approximations of
the smallest FIS, but these approximations are not usually
guaranteed to be FIS. Also, existing methods to compute
infinite-time reachable sets are limited to linear or polyno-
mial systems. Finally, most reachable set methods involve
iteratively integrating trajectories to find a set at each point
in time. This is unnecessary and inefficient for computing
FIS, which can be evaluated using only boundary conditions.

The method in this paper is inspired by the 2D version
[18], [19] and they share some important features. Both
approaches discretize the boundary search space into piece-
wise linear segments, which are searched to find an optimal
boundary within the discretized space. The most important
difference is this new method works for systems with more
than two state variables, as it uses multi-dimensional sim-
plexes instead of line segments to discretize the boundary
space. Instead of using path-planning techniques to perform
the optimal boundary search as in [18], [19], we use a greedy
search with backtracking that can handle the increased com-
plexity of the multi-dimensional discretization.

II. BACKGROUND

A. Differential Inclusions

Differential inclusions can model systems that evolve over
time in multiple possible ways, such as systems with pertur-
bations or control inputs. Defining the state z(t) € X C R™,
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a differential inclusion
@(t) € F(x(t)) , (1)

constrains the time derivative of the state to a set of possible
values defined by the set-valued map F(z) C R™.

For our purposes, differential inclusions provide a no-
tationally convenient way to study perturbed systems. For
example, a nonlinear system x(t) = f(x(t),d(t)) with
unknown perturbation §(t) € P C R™ is equivalent to a
differential inclusion (1) with F'(z) = {f(z,d): 0 € P}. In
the next subsection, we will show how the FIS of perturbed
systems can be characterized succinctly in terms of F'.

In this paper, we assume that F'(x) is bounded and non-
empty for each value of x € X and that F' is Lipschitz
continuous with respect to the Hausdorff metric, meaning
that there exists a Lipschitz constant £ > 0 such that

H (F(21), F(22)) < {21 — 22| 2)
for all x1, x5 € A, where the Hausdorff metric H [20] is
H(Sl,SQ) = max {h(Sl,Sg), h(SQ,Sl)} N (3)
h(A,B) =sup inf |la—b| . 4)
acA beEB

For a differential inclusion representing a perturbed system
F(z) = {f(x,0) : & € P}, certain properties of f and P can
ensure that our assumptions on F' hold. Specifically, if for
each ¢ € X, f(z,0) is uniformly bounded over all § € P,
then F(z) is bounded for each z € X. If f is uniformly
Lipschitz continuous in x (ie. ||f(z1,0) — f(x2,d)]] <
Uz — x| for all 1,29 € X, § € P), then F is also
Lipschitz continuous with the same Lipschitz constant.

When F' is Lipschitz continuous, absolutely continuous
solutions to (1) are guaranteed to exist for every initial state
zg € X [20], and we use the term ® to denote the set of
these solutions.

B. Forward Invariant Sets (FIS)

Forward invariance is a property that can be used to study
the robustness and performance of a system.

Definition 1: Given a system with solutions ®, a subset
of the state space S C X is forward invariant or strongly
forward invariant if for all solutions ¢ € ®, if ¢(ty) € S for
some time tg, then ¢(t) € S for all times ¢ > tg.

The robustness of an equilibrium point or a nominal
trajectory can be measured by a forward invariant set (FIS)
that contains them. The smallest FIS is of particular interest,
as it is a tight measure of robustness. Given a seed set
E C X, such as & = {x.} for an equilibrium point z.
with f(z.,0) = 0 or &€ = {z*(t) : t > 0} for a nominal
trajectory z*(t), we denote the smallest FIS containing £ as
Sr.e. Defining the set of all FIS containing £ as % ¢, the
smallest FIS S ¢ is the least element in Zr ¢, meaning that
Sre € X satisfies Spg C S forall S € Zpe.

In most cases, it is impractical to directly verify that a
set is forward invariant or to construct forward invariant sets
by examining all of the trajectories of a system. Instead,
if a system has continuous solutions, we can evaluate if a

Fig. 1: The invariance conditions (6) are satisfied at the three
boundary points shown labeled with the directions of the
dynamics F' and the normal directions Ng.

set is forward invariant by checking that trajectories never
leave the set through its boundary. We do this by comparing
the angle between the dynamics F' and the normal to the
set’s boundary. In general, the boundary of an arbitrary
FIS may not be a smooth manifold, which is traditionally
required to define normal vectors. Our method will use sets
with piecewise linear boundaries that are non-smooth at the
intersections between the linear segments. However, for any
arbitrary set .S the outward-pointing normal cone [20] is

Ns(z) ={¢ €R": Je > 0 with

it o+ e — s =elcly. @

Along the boundary of S, which we denote as 05, the
normal cone Ng is the set of outward-pointing normal
directions. Fig. 1 illustrates three boundary points with the
corresponding normal cone at those points. On the left of Fig.
1 is a point where 05 is locally smooth, and the normal cone
is equivalent to the traditional normal vector, on the right is a
non-smooth point where S is locally convex and the normal
cone is non-trivial, and in the center is a non-smooth point
where S is locally concave and the normal cone is equal to
the zero vector Ng(z) = {0}.

Theorem 1: For a system as in (1) with F' Lipschitz
continuous, a closed set S C X is an FIS if and only if

(F(z),Ns(z)) <0 forall z € 3S . (6)

Proof: This theorem is a minor variation [21, Theorem

3.8] (although with different notation), where we are using

the additional fact that Ng(z) = {0} for = € int(S). |

The invariance conditions in (6) relate the angle between

the outward-pointing normal cone Ny and the direction of

the dynamics F', so that the set .S is invariant if the elements

of F point “into” the set, as illustrated in Fig. 1. In the rest

of this paper, we will use the invariance conditions (6) to
construct sets that are the boundaries of FIS.

C. Using Oriented Boundaries to Define Sets

Our method will construct sets that are the boundaries of
FIS, which is possible because a) the invariance conditions
(6) for a set are only relevant at its boundary and b) we
can entirely specify a set by its boundary and normal cones.
Specifically, given a closed set I' C X with empty interior
I' = OT" and given a set-valued function N (z) C R™ defined
for z € T', we will call the pair (T', N') an oriented boundary
if it defines a unique closed set Cr n of which I' is the
boundary, so that Cr xy =T and N¢,. , = N.
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In general, it may be difficult to determine if an arbitrary
pair (I', N) is an oriented boundary, but in Section IV-B we
will show how this is relatively easy when I' is piecewise
linear. Our approach to finding FIS will involve incrementally
constructing piecewise linear oriented boundaries.

III. COMPUTING SMALLEST FORWARD INVARIANT SETS

Given dynamics F' and a seed set £, our goal is to find
the smallest FIS Sg¢. We formulate this as a constrained
optimization problem to find the oriented boundary of Sg¢.

Problem 1: Find (I, N) that satisfies the constraints

1) (boundary) (T',N) defines a unique set Cr n

with OCr vy =T and Ng. , = N

2) (seed) ECCr N

3) (invariance) (F'(z), N(z)) <0 forall z € T
and (optimality conditions) if some other (T, N') satisfies
these constraints, then Cr y C Cr/ n-.

In general, it is not tractable to find closed-form solu-
tions to this problem. Instead, we want to find iterative
numerical approximations that will converge to the solution.
Furthermore, in many applications, we want the approximate
solution to strictly satisfy the constraints of Problem 1.

This paper focuses on finding an approximate solution to
Problem 1 that strictly satisfies the constraints. This solution
will be an FIS that is close the smallest containing the seed
set £. The fact that the solutions we find will strictly meet
the constraints is an important feature of our approach that
distinguishes it from most other related numerical methods.

Before we can proceed to finding approximate FIS solu-
tions to Problem 1, we must first consider how to discretize
the problem in a way that makes it computationally tractable.

IV. DISCRETIZING BOUNDARY SEARCH SPACE

We will use a finite collection of oriented piecewise linear
segments to represent possible oriented boundaries and we
will show in the following sections how this representation
is amenable for solving Problem 1.

A. Background: Oriented Simplexes

A (geometric) simplex is a generalization of triangles and
tetrahedrons to higher dimensions. In R", a k-simplex A with
0 < k < n, also called a k-face, is defined by the convex
hull of a set of (k+1) vertex points {vy, ..., vi } with v; € R”

k k
AZ{ZCﬂ%ICiZO,ZCz‘Zl} , @)
i=0 i=0
where we assume that the matrix
B = [(’Ul — Uo), . (’Uk — ’Uo)] € RnXk (8)

has linearly independent columns. A k-simplex contains
(k+1) number of (k-1)-simplexes, each defined by removing
one of the original vertices {vo, ..., V;—1, Vi1, ..., U }. This
can be repeated to obtain lower dimensional simplexes. We
will refer to these (k-1)-simplexes as (k-1)-sub-faces. Fig. 2
shows examples of k-simplexes for k € {0, 1,2, 3}.

When the vertices are ordered (vo, ..., vy ), the columns of
B form an ordered basis that orients the simplex, as shown

. 2-simplex 3-simplex
. 1-simplex
0-simplex

[ ] [ e ]

Fig. 2: Simplexes of different dimensions. A 1-simplex has
two O-simplexes, a 2-simplex has three 1-simplexes, etc.

Oriented Oriented Oriented
0-simplex 1-simplex 2-simplex
R R2 V2 RS
N
U, N
QN vo | B V1
Vo U1
+(vo) +(vo,v1) +(vo, v1,v2)
—(vo) —(vo,v1) —(vo,v1,v2)
V2
B
N g Vo 1 (%1
N
N =
Vo U1

Fig. 3: Oriented (n-1)-simplexes shown in R™ with normals
(green arrows) and ordered basis vectors (purple arrows, not
to scale). Note that a O-simplex has only 1 vertex, so it can
be oriented by a sign (4 or —) but not by a vertex ordering.

in Fig. 3. There are only two possible unique orientations
of a given simplex [22], and the orientation is reversed
whenever pairs of vertices are exchanged in the ordering.
For example, (vg,v1) has opposite orientation as (v1,vp).
In typical notation, the vertices are kept in some default
ordering and the simplex is labeled with a minus sign (—)
if it has opposite orientation to the default.

For an (n-1)-simplex, an orientation also defines a ori-
ented unit normal vector N = m(B) using the right-hand
convention, as shown in Fig. 3, where

_ N\

m(B) =m(B) €R"  m;(B) = (-1)"""detB\; (9)

and where B\; is formed by removing the ith row from B.

B. Oriented Simplicial Boundaries

In this section, consider a collection of k-simplexes I =
{Al, ---;Ar}’ where A,L = S; (ai,v07...7vk,1), with Sigl’lS
s; € {+, —} defined accordingly, that are intersecting at the
shared (k-1)-sub-face A = (vg, ..., Up_1).

When two oriented k-simplexes intersect at a shared (k-
1)-sub-face, the intersection is consistent if their orientations
are equivalent at the intersection. When oriented simplexes
intersect consistently, they can be treated as a single oriented
object. Using the notation in the previous paragraph, two
oriented k-simplexes A; and A, intersect consistently if
s1 = —sg; see [22] for a definition using the induced
orientations of the sub-face. If two oriented simplexes do
not intersect consistently, then the intersection is inconsistent.
Fig. 4 shows some examples of consistent and inconsistent
intersections for k € {1,2}.
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Inconsistent

Consistent

Vo V1 V2
+(vo,v1)  +(v1,v2)
() V3 V2 U3
Vo (% Vo (%1

+(vo, v1,v2) —(v1,v2,v3) +(vo, v1,v2) +(v1, v2,v3)

Fig. 4: Consistent and inconsistent intersections of 1- and
2-simplexes, shown with normal vectors (green arrows).

Ny N,

¥

3

Al A4

Az
Ay Ny

Fig. 5: The intersection of {Aj, Ay, Az, Ay} is consistent,
but the intersection of any three of the faces is inconsistent.

We define an intersection of multiple oriented (n-1)-
simplexes at a shared (n-2)-sub-face to be consistent if each
pair of adjacent (n-1)-simplexes intersect consistently. Con-
sistently intersecting (n-1)-simplexes locally define disjoint
interior and exterior sets, as seen in Fig. 5. We use this
property to define oriented boundaries made up of simplexes.
To make this definition more rigorous, we first define the
angle between two (n-1)-simplexes as

9(A1, AQ) = atan2 (8182 <R1, N2> , 81592 <N1,N2>) (10)

where Ry = m([B, N]) and where B is the matrix (8)
associated with the shared sub-face A. The positive angle
0(A1,A3) € [0,27) is measured by rotating A; in the
direction opposite of N7 until reaching As. For example,
in Fig. 5, the angle 0(Aq, Ag) ~ /3.

We can use the angle between faces to rotation-
ally order them around a shared sub-face. We can rep-
resent an intersection by the signed, cyclic ordering
I = ((01,8601)); - (0r, As(ry)) Where o is a permuta-
tion with §; Q(Ag(l),Ag(i))) < 4 H(Ag(l),Aa(i+1))) and
the signs 6; € {+,—} are chosen so 0;s,(; is the
same for all 7. For example, the intersection in Fig. 5
can be represented as ((+, A1), (—, Ag), (+,As), (—, A4))
or equivalently as ((—, A1), (+,Aq), (=, A3), (+,A2)) or
((+’ A2)7 (_7 Al)v (+a A4)7 (_’ A3))

With this representation, an intersection / is consistent if
the signs alternate §; = —d;41 for all . The caption of Fig.
5 indicates which subsets of the faces intersect consistently
or inconsistently, as can be verified using this definition.

Given a set D of (n-1)-simplexes, we define Zp C 20 5o
that each element I € Zp is the set of all faces involved in
the intersection at a particular shared (n-2)-sub-face.

Proposition 1: Given a finite set D of oriented (n-1)-
simplexes that only intersect at shared sub-faces, D is an

oriented boundary if and only if each I € Zp is consistent.

Proof: (=) If there exists an I € Zp that is not
consistent, then there will be a local neighborhood around
the (n-2)-simplex associated with the intersection I where
the oriented normal vectors will not agree on which region
is the interior or exterior of the set, so in this case, D cannot
be an oriented boundary.

(<) If each intersection I € Zp is consistent, we can
topologically “cut” the boundary at each intersection [
into locally consistent pairs of faces. The topological space
formed in this way is equivalent to one or more combinatorial
(n-1)-pseudomanifolds [23]. As shown in [23] and the ref-
erences therein, when a combinatorial (n-1)-pseudomanifold
is bijectively mapped onto a set I' C R", the set I' divides
R™ into two connected components Sy, and Sex. These
correspond to the interior and exterior of the set defined by
the boundary T', with Sy UT U Sexe = R™, Sipe N Sexe = 0,
and 0Sjy = O0Sexx = I'. In our case, the mappings from
the pseudomanifolds to I'; C R™ may be singular at each
I € Ip, but since the boundaries I'; do not cross each
other, we preserve the separation between the interior sets
Sint,i defined by each pseudomanifold mapping to I';. The
combined boundary I' = | J, I'; separates the space into the
interior Sine = (|, Sint,i) and exterior Sexq = (U; Sext,i)\ Sint
satisfying the properties to make I' an oriented boundary. H

This theorem allows us to determine if a set D of oriented
(n-1)-simplexes is an oriented boundary by checking the
consistency of each intersection I € Zp. We will call D
that meet these conditions oriented simplicial boundaries
and define Cp as the unique closed set of which D is the
boundary.

Given a search space of (n-1)-simplexes, our algorithm
will iteratively construct an oriented simplicial boundary that
is the smallest possible FIS containing some given seed set
that can be represented in the discretized space.

V. TESTING FORWARD INVARIANCE

In order to ensure the oriented simplicial boundary that
our algorithm constructs is an FIS, we can choose the
orientation of each simplex to meet the invariance constraints
(6) if possible, or remove the simplex if it cannot meet the
invariance constraints for either normal orientation.

A. Normal Cones of Oriented Simplicial Boundaries

Since oriented simplicial boundaries are non-smooth at
the intersections between faces, we must compute its normal
cone at these points to test the invariance conditions (6). As
we will show, this is not a problem when F' is Lipschitz, as
we can essentially ignore the non-smooth boundary points.

It is possible to derive an analytical expression for the
normal cone N, () of an oriented simplicial boundary D,
but the expression is extremely lengthy. Instead, we use the
much more compact estimate for the normal cone

Nep (x) C cone({N; : A; € D with © € A;}) (11)

where for some finite set A, the operator cone(A) =
{2 aca Aa s Aq > 0}. When all intersections between faces
are convex, the relationship (11) holds with equality.
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This estimate for the normal cone (11) is sufficient to test
the invariance condition on an oriented simplicial boundary.
Proposition 2: Given an oriented simplicial boundary D,
if (F(z),N;) <0 for all A; € D and all x € A;, then
(F(z),Nep (z)) <0 forall z € |JD.
Proof: We know that for all z € |JD

(F(x),Nep (2)) C (F(x),cone{N; : A; € D s.t. x € A;})

= <v7 > AiNi>:veF(x),)\i>0

AN;€D:
st z€EA;

=< > AN :veF(a), >0

N;€D:

st z€EA;
Therefore, if (v, N;) < 0 for each v € F'(z) and z € A,,
we know that (F(z),Ne,, (x)) < 0. [

Proposition 2 provides sufficient conditions to test if an
oriented simplicial boundary satisfies the invariance condi-
tions (6). It allows us to show that (6) holds at the non-
smooth intersections, without having to directly check the
normal cones at those points.

B. Computational Verification

We want to computationally verify that an oriented simpli-
cial boundary satisfies the invariance conditions (6) without
testing all of the infinite number of boundary points. When
the dynamics F' are Lipschitz continuous, if a given normal
direction non-strictly satisfies the invariance conditions (6) at
a boundary point, then the normal direction will also satisfy
the invariance conditions at nearby boundary points.

Proposition 3: Assuming F' is ¢-Lipschitz continuous and
given a point zg € &, a unit normal vector N € R™ with
|[N|| = 1, and a constant € > 0, if (F'(z), N) < —e, then
(F(z),N) <0 forall x € X with ||z — || <¢/f.

Proof: Forall z € X

<F('T)’N> < sup <’U’N>

veF (x)
= sup inf (v—wy,N)+ sup (vg,N)
veF (z) vo€F (o) voEF (z0)

If <F($0),N> < —¢, then SupvoeF(x0)<007N> < —¢
by definition of the supremum. Using the Cauchy-Schwarz
inequality (v — vg, N) < ||v — vo| || N|| = ||v — vo]|, so
(F(z),N) < sup inf
vEF (z) voEF (x)
= h(F(z), F(xo)) — e < H(F(x), F(z0)) — €
<ALz — xo|| — €

[v —vol —€

where the last step uses the Lipschitz property of F. There-
fore, if ||z — || < €/¢, then (F(z),N) <0 [ |

Using Propositions 2 and 3, we can guarantee that an ori-
ented simplicial boundary satisfies the invariance conditions
(6) in some cases. We do this by showing that for each face
A; € D there exists a collection of test points z; € A;
where (F(z;),N;) < —e; with ¢; > 0 and the test points

are sufficiently close together so that A; C [J,{z € & :
|z — ;|| <e¢;/¢}. If we can find such points for each face,
then the entire boundary satisfies the invariance conditions.

As a part of our algorithm, we will only include an
oriented face in the search space if we can guarantee that it
satisfies the invariance conditions (6). This way, any oriented
simplicial boundary we find is guaranteed to be an FIS. For
any face, it will only ever be possible to prove that one
of the two orientations satisfies the invariance conditions.
This is because the only case where both orientations satisfy
the invariance conditions is when (F'(x), N;) = 0 for all
x € A;, which can only be verified using an infinite
number of test points. When we cannot guarantee that
either orientation satisfies the invariance conditions, either
because a) (F(x), N;) > 0 at some points on the face and
(F(x), N;y <0 at other points or b) we have only a limited
number of test points and could not cover the face with these
points, then we will eliminate that face from the search space.

VI. DISCRETIZED FIS SEARCH
A. Selection of Discretized Search Space

The first step of our search for the boundary of the smallest
FIS is to discretize the boundary space into a finite set of
(n-1)-simplexes that only intersect at shared sub-faces. Once
an orientation has been selected for these faces, they will
serve as the search space for our discretized algorithm. The
faces should be chosen to cover the region of interest of the
state space, i.e. the region surrounding the seed set £. As in
[18], [19], it is advantageous to start with some larger FIS
obtained from another method, which can reduce the size of
the region that needs to be searched. The search set of faces
can be generated in a very simple way, such as a tiling of the
region of interest, or by more advanced adaptive sampling
methods that will be explored in future research.

Each time we first encounter a face during the search, we
either assign it an orientation or remove it from the search
space, as described in the previous section. We will also
remove any faces that intersect with the interior of the seed
set int(&), as these faces could not be part of a boundary
that fully contains £. Since we will either assign a unique
orientation to a face or remove the face from the search the
first time it is visited, we will act as if each face in the search
always has an assigned orientation. With this perspective, the
discretized search space is a set of oriented (n-1)-simplexes
that only intersect at shared sub-faces.

B. Discretized Problem Statement

Problem 2: Given a finite set D of oriented (n-1)-
simplexes that only intersect at shared sub-faces, find the
subset S* C D that satisfies the constraints

1) (boundary) Each intersection in I € Zg« is consistent

(as defined in Section IV-B)

2) (seed) E CCg~
and (optimality conditions) if some other S C D satisfies
these constraints, then Cg« C Cg.

This is a discretized version of Problem 1. Instead of
finding the smallest possible FIS boundary, this problem
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seeks the smallest possible boundary in the discretized space
D of oriented simplexes, which we denote as Sp = S*. The
invariance constraints in Problem 1 are enforced implicitly
in Problem 2 by only allowing oriented simplexes to be a
part of the discretized space D if they satisfy the invariance
constraints. If any set S exists that satisfies constraints 1)
and 2) of Problem 2, then Sp exists and is unique. Instead
of using a brute force search to find Sp, we use a greedy
local search with backtracking.

C. Starting Faces

We use a method to similar [18], [19] to pick the starting
faces to begin our search for the smallest discretized FIS
Sp. For now, we will assume that the seed set £ is path
connected, but later we will show how this assumption can
be removed. We first choose a smooth non-self-intersecting
path p : [0,1] — X with the start point p(0) in the seed
set £ and end point p(1) outside of the region of interest. A
simple choice is to make this path linear, which is similar to
[18], [19]. However, we must also choose the path so that
it only intersects faces transversally and it does not intersect
with any sub-face in the discretized boundary space. In other
words, the path can not intersect faces tangentially or at
their “edges.” If we inadvertently choose a path that violates
these conditions, then we can locally deform the path to
restore the conditions. With these assumptions, the path only
intersects one face at a time, and we can order the faces that
the path intersects (A, ..., Ag) by the order in which they
were intersected, i.e. the intersection times s; € [0, 1] with
s; < ;11 have p(s;) € A;. We can also identify which
faces were intersected on the outward-pointing or inward-
pointing side, as specified by the normal orientation of the
faces. Specifically, if (p(s;),N;) > 0, then face A; was
intersected on its inward-pointing side, if (p(s;), N;) < 0,
then face A; was intersected on its outward-pointing side,
and (p(s;), N;) # 0 because of the transversality assumption.

We will search these starting faces in the order they are
intersected by the path, ignoring faces that are intersected
on their outward-pointing side. We try to find an oriented
simplicial boundary containing each face in the order, and
only move on to the next face if we find that no oriented
simplicial boundary can contain the previous face.

Proposition 4: Assuming the seed set £ is path connected,
given a finite set D of oriented (n-1)-simplexes that only
intersect at shared sub-faces and given a collection of faces
(Aq,...,Ay) ordered by their intersection of a path p as
defined above, the smallest discretized FIS Sp contains the
face with the lowest index in the order A; that is intersected
on its inward-pointing side by the path p and such that there
exists an oriented simplicial boundary containing A;.

Proof: Suppose A; is the face with the lowest index
in the order such that there exists an oriented simplicial
boundary containing A;. Since none of the faces before
A; are in any oriented simplicial boundary, no oriented
simplicial boundaries will cross between £ and A; along
p. Therefore, if p intersects A; on its outward-pointing side,
then any oriented simplicial boundary containing A; will

be path connected from its exterior to £, so £ must be in
the exterior of the set enclosed by the boundary. Similarly,
if A; is intersected on its inward-pointing side, then any
oriented simplicial boundary that contains A; will enclose
the seed set £ in its interior. Furthermore, any oriented
simplicial boundary that encloses £ in its interior must also
either enclose A; in its interior or contain A;. If an oriented
simplicial boundary encloses A; in its interior, then it is
not the smallest discretized FIS, since there exists another
oriented simplicial boundary containing A;, and thus the
intersection of the sets enclosed by these two FIS would
be smaller. Therefore Sp must contain A;. [ |

Proposition 4 tells us that we should look for the first face
that is intersected by the path on its inward-pointing side
and is contained by some discretized FIS, as this face will
be part of the smallest discretized FIS Sp. Starting from a
face like this, we will use similar reasoning to construct the
rest of Sp by choosing the next faces locally optimally.

We can also extend these results to the case when the
seed set £ has multiple path connected components. The
simplest way to do this is to apply these results for each
path connected component of £ independently, and then join
the resulting oriented simplicial boundaries.

D. Locally Optimal Faces

Now that we have a way to pick a starting face for the
search, we can build upon this face by adding faces that
must be in the smallest discretized FIS, if a discretized
FIS exists that contains these faces. We will iteratively
construct sets of included and removed faces by examining
each intersection in the existing included set, removing faces
that are inconsistent, and including additional faces that are
locally optimal, as will be defined in this subsection.

At an intersection I € Zp, for a face A € I, given a
set of removed faces R € D, if it exists, we define Ba 1 r
the locally optimal face to A not in R as the face not in
R that is consistent to A with minimum interior angle at
intersection /. If the modified intersection is represented as
NR=(...,(+,A),(—,A7),..), then Bao 1 r =A".

In the following proposition, we say that an oriented
simplicial boundary that contains S and does not contain
R is an oriented simplicial boundary for (S, R).

Proposition 5: Given a finite set D of oriented (n-1)-
simplexes that only intersect at shared sub-faces, given sets
S C D and R C D\S, given an intersection M € Zg with
associated intersection I € Zp with M C I, and given a
face A € M, if there exists an oriented simplicial boundary
for ((SUBa,1.r), R), then the smallest oriented simplicial
boundary for (S, R) will also contain Ba i g.

Proof: Any oriented simplicial boundary S’ for (S, R)
must also include some element consistent to A at 1. If S’
contained such a consistent element A’ € I with A’ #
Ba.r,r, then A’ would be locally exterior to Ba g at
I. Because of this, if there exists an oriented simplicial
boundary S” for ((S U Ba 1,r),R), then S’ would not be
the smallest oriented simplicial boundary for (S, R), since
the intersection of the sets enclosed by S” and S” would be
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smaller. Therefore, the smallest oriented simplicial boundary
for (S, R) must also contain Ba ;. g. [ |

E. Conditionally Included and Removed Faces

As a part of the search for Sp, we will iteratively include
locally optimal faces, as described in the previous subsection.
We will also remove faces that, if added, would make the
currently included faces inconsistent, even if additional faces
are included. Given sets S C D and R C D\S and given an
intersection M € Zg with associated intersection I, we will
remove any face A € I such that M’ is not consistent for
any M’ with (M UA) Cc M’ C (I\R).

We can represent these conditionally included and re-
moved faces by a graph G = (S U R, E), where the nodes
of the graph are faces that are included S or removed
R and where the directed edges represent the conditions
under which each face was either added or removed. For
an included face A € S, if we add another face A’ that is
locally optimal to A, then we create an edge (A, A’) € E.
Furthermore, if there was another removed edge A” € R that
would have been locally optimal to A instead of A’ if A” had
not been removed, then we create another edge (A", A’) €
E. If we conditionally remove a face as described in the
previous paragraph, then we create edges pointing to it from
any face that is currently in .S or R at the intersection. Using
this representation, we can sometimes prove that S = Sp.

Theorem 2: Assuming the seed set £ is path connected,
given a finite set D of oriented (n-1)-simplexes that only
intersect at shared sub-faces and given a graph G = (S U
R, E) as described above, if G is an ordered graph that is
rooted at a start face A;, as in Proposition 4, and if the
locally optimal face to any terminal node of G in S is also
in S, then S = Sp.

Proof: By construction, the set S is consistent at every
intersection in Zg. Since G is ordered, we can inductively
prove, beginning at the terminal nodes in S and finishing at
the root A;, that a node in S is in the smallest discretized
FIS for all of the higher level nodes in G. Since the graph
is rooted at the start face A;, as in Proposition 4, this is the
smallest discretized FIS that encloses the seed set £. [ ]

F. Greedy Search with Backtracking

Our goal is to now construct a graph of faces G = (S U
R, E) as in Theorem 2. We can do this by iteratively adding
and removing faces as described in the previous subsection.
The last difficulty is that during this process, we may be
forced to remove some faces that were already added to S.
This happens whenever we discover an intersection M €
Ts that is inconsistent regardless of any faces that we may
additionally include, so M’ is inconsistent for any M’ with
M c M’ C (I\R). We can resolve this by removing one or
more elements in M from S, along with its corresponding
edges in the graph G. Then, in order to prevent the same
situation from happening again, we remove any inconsistent
faces at the intersection. Regardless of the details, this kind
of backtracking procedure should not effect the optimally

of the result, since as long as we meet the conditions of
Theorem 2, we will have the optimal solution.
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