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Abstract— A novel bio-inspired strategy, the Hybrid Speeding
Up Slowing Down (Hybrid SUSD) strategy, is introduced to
achieve distributed control of a multi-agent system for the
localization of multiple sources in a search space. Hybrid
SUSD switches between bio-inspired exploration algorithms and
exploitation algorithms. The exploration algorithms provide
coverage of the workspace with non-zero probability. The
exploitation algorithms leverage the SUSD strategy for source
seeking without explicit gradient estimation. Conditions for
switching between exploration and exploitation are developed
based on measurements taken by an agent and the number of
neighbors an agent may have. Given a confined search space,
the convergence of the hybrid SUSD to locate a source is
rigorously justified. Simulation results confirm that the strategy
allows each agent to converge to one of the source locations.
The Hybrid SUSD may be used as a distributed optimization
algorithm that is able to find all minima of a function over a
confined search space.

I. INTRODUCTION
Mobile sensing agents can be deployed to measure an

unknown field around a source. These measurements can
represent temperature around a heat source, chemical con-
centration near a chemical plume etc. When the motion of
agents is directed towards the local minima or maxima of a
field, we refer to this as source seeking. Various approaches
have been used in literature which devise source seeking
strategies for both single and multi-agent systems [1][2].

Most source seeking algorithms assume that the agents
have access to the gradient of a field [3]. Others rely on
estimating the gradient either by taking measurements from
multiple sensors or using a collaborative strategy [4]. Either
way, these approaches assume that an agent has a reliable
measurement of the field. Moreover, most of these strategies
are designed assuming there is only a single source located
in the field and are either applicable for multi-agent or single
agent systems but not both [1][4]. This motivates us to
develop a strategy for seeking multiple sources in a non-
convex field, enabling every agent to reach one of the sources
using an individual or collaborative approach.

We take inspiration from the collective motion in animal
groups to devise such a strategy. One of the reasons being
that animals are able to find sources in the presence of
uncertainties in the environment and without any localization
service. For instance, the algorithm by Wu et. al [5][6] takes
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inspiration from fish school behavior where they proposed a
multi-agent source seeking algorithm that does not require
explicit gradient estimation of the scalar field. However, this
algorithm requires an agent to have measurements at all times
and cannot locate multiple sources.

Furthermore, an efficient strategy to locate multiple
sources requires a framework which allows exploration in
the absence of reliable measurements and exploitation in
the presence of reliable measurements. Apart from the
various optimal coverage patterns [7], common exploration
approaches also involve random walks [8]. Motion models
of most animals are generally derived from simple random
walk processes, for example, Theraulaz et. al in his recent
work characterizes fish trajectories through a Persistent Turn-
ing Walker model (PTW) [9][10]. PTW is different from
Persistent Random Walk (PRW) since it incorporates the
correlation between subsequent angular velocities instead of
the correlation between subsequent headings. Since these
models do not require any localization service, they can
be deployed to design exploration strategies where constant
localization of the agent is difficult.

In this paper, we devise a novel bio-inspired source
seeking strategy, which implements distributed control of
a multi-agent system to localize multiple sources. Agents
use an exploration strategy based on [9] to search the
work space until a reliable measurement of a scalar field is
encountered. At this stage, the agent adopts an exploitation
strategy depending on whether it has neighbors or not. The
allocation of neighbors is based on a simple distance metric.
If an agent has neighbors, it adapts the SUSD strategy which
enables the team to seek a source without explicit gradient
estimation [5]. We show that by using Hybrid SUSD, a
group of agents is always able to explore sources at multiple
sites by using a collaborative or individual approach while
remaining confined inside the region of interest. Moreover,
this algorithm can be used for non-convex and discontinuous
scalar fields to localize multiple sources using a distributed
approach. We also show the convergence of the algorithm
and verify the same using simulation techniques.

II. PROBLEM FORMULATION

Let there be a group of N agents trying to localize K
sources in a two-dimensional search space Ω, such that Ω is
defined as follows:

Ω = {r : −c ≤ (r− rwc) ≤ c, c > 0} (1)

where r is a position vector and rwc are the center coordi-
nates of the search space. c represents any positive constant
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Fig. 1: Block digram showing Hybrid SUSD strategy

which bounds the search space.
Let each source k ∈ {1, ...,K} be surrounded by a scalar

field zk(r),∀r ∈ Ω denoting a measurement of light, chemi-
cal concentration or temperature. The following assumptions
holds for zk(r):

Assumption 1: 1) The field zk(r) is time-invariant.
2) zk(r) is bounded by a minimum value zmin and a

maximum value zmax such that zmin ≤ z(r) ≤ zmax

and zmax, zmin > 0,
3) Each source k is surrounded by a closed and connected

region Ωk such that zk(r) is considered unreliable for
all r 6∈ Ωk.

4) The minima of the field zk(r) is at the location of the
source k and is denoted by rs,k.

5) The sources are separable, that is, for a source k and
a source l, where k 6= l, the following condition holds:

Ωk ∩ Ωl = φ (2)
Given the above assumptions, we aim to design a source

seeking algorithm which enables each agent i ∈ {1, ..., N},
to use a collaborative or individual approach in order to reach
one of the sources present in the scalar field.

III. HYBRID SUSD STRATEGY

Hybrid SUSD is a bio-inspired algorithm which can be
used by a multi-agent system for the localization of one
or more sources in a given scalar field. It consists of
an exploration strategy which enables an agent to explore
the search space whether it has neighbors or not, until it
encounters reliable measurements. At this stage, the agent
switches to a multi-agent source seeking strategy only if it
has neighbors, otherwise it remains in the exploration mode.
The algorithm terminates when all the agents are able to
reach one of the sources in the scalar field. A block diagram
of the algorithm is shown in Fig.1.

A. Neighborhood Selection

In order to define the neighborhood of an agent i, we make
use of a distance threshold dth. If we define the neighborhood
of an agent i by Ni, where Ni ⊂ {1, 2, ....N}/{i}, then an
agent j ∈ Ni if dij ≤ dth, where dth > 0.

B. Exploration using Steering Control

To establish the behavior of agents in the absence of
any reliable measurement, we take inspiration from the fish

motion model by Theraulaz et. al [9][10]. This model is
characterized by a constant swimming speed v and a corre-
lation between angular velocities, w at consecutive instances
of time.

Taking ri as the position and φi as the heading of fish i,
the following dynamical system represents the fish motion,

dri = v

[
cosφi
sinφi

]
dt (3)

dφi = wi(t)dt (4)

dwi(t) = −v
[

1

ξ
(wi(t)− w∗i (t))dt− σdW

]
(5)

where, σdW is a Weiner process of variance σ2 and ξ is a
constant. The target angular w∗ velocity given by,

w∗i (t) = k̂W
sgn(φiW )

τiW
+

1

|Ni|
∑
j∈Ni

(kpdijsinθij+k̂vvsinφij)

(6)
where, φiW denotes the angle between the heading of a fish
i and the point of impact with respect to the normal of the
wall; τiW is the time it would take for the fish i to hit the
wall; dij is the distance between fish i and fish j; θij is
the bearing angle of fish j relative to the velocity of fish i;
φij denotes the relative heading of fish j compared to fish
i; and k̂W , kp and k̂v are constants. Lastly, Ni denotes the
neighborhood of i as described in the previous subsection.

This steering model can be deployed as an exploration
strategy for a group of N agents. An agent continues to
explore the search space until it gets a reliable measurement
of the source in which case it switches its strategy to that
of source seeking depending on whether it has neighbors or
not. To identify neighbors we use the neighborhood selection
criterion mentioned in Section III-A .

C. Exploitation using SUSD strategy
For any source k, an agent i will switch to the exploitation

strategy if the following two conditions are satisfied,
1) ri ∈ Ωk

2) rj ∈ Ωk such that j ∈ Ni

1) Multi-agent strategy: Inspired by fish behavior, pre-
vious works [5][6] develop a source-seeking algorithm for
a group of agents with no explicit gradient estimation of a
scalar field. The model is termed as SUSD. The algorithm
chooses a baseline for a group of agents and decomposes
the velocity of each agent into two parts; the first part, v⊥i is
chosen to be proportional to the measurements of the scalar
field while the second part v‖i is designed to keep the inter-
agent distance constant at all times. If q is a baseline used to
achieve the decomposition of v and θq is the angle between
a stated inertial frame and q, then the velocity vi of an agent
i is given by the following equations:

v⊥i = (kz(ri) + C)

[
−sinθq
cosθq

]
(7)

v‖i = kp
∑
j∈Ni

((ri − rj) · q− a0ij) (8)
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where, a0ij represents the desired inter-agent distance be-
tween agent i and j while k, kp and C are constants. An
agent i looks for its closest agents along direction q and Ni

denotes those agents.
Using (7-8) enables a team of agents to seek a source with-

out explicit estimation of a gradient field. We incorporate this
model in hybrid SUSD to enable source seeking for multi-
agent systems. Moreover, using the neighborhood selection
rule given in III-A gives the possibility of multiple teams
to be formed at the same time to seek a single or multiple
sources. Hence, this method allows seeking multiple sources
in non-convex scalar fields.

2) Single agent: If ri ∈ Ωk but there is no other agent
j such that j ∈ Ni, then agent i is unable to estimate the
gradient of the scalar field by itself. Hence, it keeps exploring
the search space using the motion model (3-5) until it finds
a neighbor or the stopping condition is met.

D. Stopping Condition

We define a scalar value δ > 0 such that if for an agent
i, z(ri) ≤ δ, we can assume that the agent i has reached
the origin of the source and vi = 0. Therefore, the algorithm
terminates when z(ri) ≤ δ for all i where i = 1, 2.....N .

Algorithm 1: Hybrid SUSD Strategy
Data: z(ri(t)), φi(t), ri(t)
Result: φi(t+ 1), ri(t+ 1)
Initialization φi(t0), ri(t0), wi(t0)
while z(ri(t)) ≥ δ do

for i = 1 : N do
if ri(t) ∈ Ω then

if (∃j ∈ Ni) ∩ (rj(t) ∈ Ω) then
v⊥i (t) = kz(ri(t)) + C

v
‖
i (t) = kp

∑
j∈Ni

((ri(t)− rj(t)).q− a0i,j)

ri(t) = ri(t− 1) +

[
v
‖
i (t) cos

(
θqi (t)

)
v⊥i (t) sin

(
θqi (t)

)]
φi(t) =

arctan
(
v⊥i (t) sin θqi (t)/v

‖
i (t) cos θqi (t)

)
else

φi(t) = φi(t− 1) + wi(t− 1)dt
w∗i (t) = k̂W

sgn(φiW )
τiW

+
1
Ni

∑
j∈Vi

(kpdijsinθij + k̂vvsinφij)

dwi(t) = −v[ dt
ξ

(wi(t)− w∗i (t))− σdW

ri(t) = ri(t− 1) + v

[
cos
(
φi(t))

sin
(
φi(t))

]
dt

end
else

φi(t) = φi(t− 1) + wi(t− 1)dt
w∗i (t) = k̂W

sgn(φiW )
τiW

+
1
Ni

∑
j∈Vi

(kpdijsinθij + k̂vvsinφij)

dwi(t) = −v[ dt
ξ

(wi(t)− w∗i (t))− σdW

ri(t) = ri(t− 1) + v

[
cos
(
φi(t))

sin
(
φi(t))

]
dt

end
end

end

IV. TERMINATION OF HYBRID SUSD

Given an agent i such that ri 6∈ Ωk, it can be proved that
using motion model (3-5), agent i reaches a location such
that ri ∈ Ωk or z(ri) ≤ δ with a non-zero probability. If
ri ∈ Ωk, then it can be shown that using the SUSD strategy,
an agent reaches the source such that z(ri) ≤ δ. Thus, given
any initial position, an agent i will always be able to reach
one of the sources with a non-zero probability. This denotes
the termination criterion for the Hybrid SUSD algorithm.

A. Markov Chain Representation

We allow an agent to move in the search space using the
motion model (3-5). For simplicity we consider a rectangular
search space, but the results can also be extended for a
circular search space.

1) Discretization of Search Space: We discretize the
search space into an n × n grid such that there are a total
of N = n2 cells in the search space where n > 2 (see
Fig. 2a). We divide the grid cells into three groups, namely,
corner cells (cells 1, 2, 3 and 4 in Fig. 2a), border cells
(cells 5, 6, 7 and 8 in Fig. 2a) and middle cells (cell 9 in
Fig. 2a). An n× n grid will always have 4 corner, (4n− 8)
border and (n − 2)2 middle cells for n ≥ 2. Moreover, let
Nci be defined as the neighborhood of cell ci such that Nci

contains all cells adjacent to ci. For example in Fig. 2a,
Nc7 = {c4, c8, c9, c5, c2}.

2) Discretized Search Model: If the size of each grid cell
is 4n × 4n, then for any 4n such that 4n < vdt, the
motion model (3-5) after discretization satisfies the following
assumptions for any cell ci:

Assumption 2: P (rt+dt ∈ ci|rt ∈ ci) = 0.
Assumption 3: For any grid cell cj ∈ Nci, P (rt+dt ∈

cj |rt ∈ ci, rt−dt ∈ cj) = 0.
Assumption 4: For any two grid cells cj , ck where cj , ck ∈

Nci and cj 6= ck, P (rt+dt ∈ ck|rt ∈ ci, rt−dt ∈ cj) > 0.
We used Monte Carlo simulations in order to analyze the

probability distribution generated by the motion model (3-5).
The initial position of an agent i, was drawn from a uniform
distribution over the entire search space and can be denoted
by ri0. The heading of the agent i, φi0 was also initialized
from a uniform distribution [0, 2π]. This was done for N
agents. The trajectory of each agent i was integrated over dt
by using the following:

dri = v

[
cosφi0
sinφi0

]
dt (9)

ri = dri + ri0 (10)
ri0 = ri (11)

The rest of the parameters such as wi and φi were
updated simultaneously according to the motion model (3-
5). The simulations were performed several times and it was
observed that the Assumptions (2-4) satisfy the model (3-5).

Note that the motion model (3-5) is different from PRW.
In PRW, there is a positive probability of the agent to move
to any of its neighboring cells, Nci. On the other hand, an
agent moving according to the motion model (3-5) has an
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(a) Grid cells (b) Kernel

Fig. 2: Search Space discretization

Fig. 3: State Transition Matrix of the motif, A. 1 < pi < 0 where
i = {1, 2...24}. Each row represents the next state while each
column represents the present state. For e.g. p2 is the probability
of going from state 12 to state 41.

additional constraint that the agent cannot immediately go
back to the cell it came from. This is because, as seen in the
simulations, the angular velocity wi(t) at any time is never
large enough to allow a change in the heading angle equal
to ±π.

3) Markov Chain Representation: Based on the probabil-
ity distribution of neighboring cells, we can represent the
discretized motion model (3-5) by a finite, discrete Markov
ChainM [11]. The states ofM are defined using the above
mentioned probabilities. We know that the movement of an
agent to any cell ci at t + dt depends in which cells the
agent was present at t and t − dt. Using the definition of
Nci as mentioned above, each grid cell ci is associated with
the number of states equal to the number of elements in Nci.
This means that each corner cell is associated with 3 states
in the Markov chain M. For example, in Fig. 2a, the corner
cell c1 is associated with three states namely, 15, 16 and 19.
15 represents the state that the agent is currently present in
c1, and it came to c1 from c5. Similarly, 16 represents the
state that the agent is in c1 and it came to c1 from c6. In the
same way all the border cells are associated with 5 states
and all middle cells have 8 states. Using this state model,
we can construct the Markov chain M given by,

Xk+1 = PXk (12)

where Xk = [p1, p2, ......pNT
]T contains the probabilities

of staying in states [x1, x2, ......xNT
] where xi represents the

states 16, 15, 24 etc. and P is the state transition matrix. We
can perform one step analysis [11] of M to find the hitting
probability of a given state from any initial state. The hitting
probability of a state xi in M is defined as the probability
of reaching state xi from any other state xj and can be given
as:

HP
i = (I −QP

i )−1RP
i (13)

where I and QP
i are both square matrices of size (NT −

1) × (NT − 1). I is an identity matrix while Qp
i is formed

Fig. 4: The digraph GA of the Markov chain MA

Fig. 5: Neighboring motifs

by removing the ith row and ith column from the transition
matrix P . RP

i is the ith column of P without the ith element
and therefore has (NT − 1) elements. Each jth element of
Hi represents the probability of reaching the state xi given
the initial state xj .

Let the associated digraph of the Markov chain M be
denoted by GP , where GP has a set of nodes NG where
NG = 1, 2, ..., ng and a set of edges EG. Then, each node
corresponds to a state of M, and GP contains an edge
(i, j) ∈ EG if and only if pij > 0 [12]. GP is said
to be strongly connected if for any nodes u and v where
u, v ∈ NG, there exists a directed path from u to v and a
directed path from v to u.

Lemma 4.1: The hitting probability of any state xi from
any other state xj is greater than zero (i.e. HP

i > 0 ∀i) if
and only if the graph GP is strongly connected.

Proof: From Section 17.2.2 in [12] we know that the
directed graph GP is strongly connected if and only if its
associated Markov chain M is irreducible. Also, we know
that the Markov chain M is irreducible, if and only if the
hitting probability of any state xj from any other state xi is
greater than zero.

4) Coverage Probability: We define a search space motif
of n = 2 × 2 cells which can be used to build the entire
search space (Fig. 2b). Each motif is associated with a finite
Markov chain MA where MA can be be given as:

Xk+1 = AXk (14)

A is the state transition matrix associated with the Markov
chain MA and is given in Fig. 3. Let GA be the associated
digraph of MA as shown in Fig. 4.

Lemma 4.2: The directed graph GA derived from the
Markov chainMA of a motif is a strongly connected graph.

Proof: The hitting probability of any state j of a motif
can be given as:

HA
j = (I −QA

j )−1RA
j (15)

Since all the elements of QA
j are less than 1 therefore we

can expand (I −QA
j )−1 using Neumann series and (15) can
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Fig. 6: The digraph formed from two neighboring motifs in Fig. 5

be written as:

HA
j = RA

j +QA
j R

A
j +

(
QA

j

)
2RA

j +
(
QA

j

)
3RA

j + ...... (16)

Since all the elements of QA
j and RA

j are greater than or
equal to zero ∀j, therefore we have:

HA
j ≥ RA

j +QA
j R

A
j +

(
QA

j

)2
RA

j +
(
QA

j

)3
RA

j (17)

Using transition matrix A (see Fig. 3) we calculated HA
j

using (17) and it was found that each element of HA
j is

greater than zero ∀j. Thus, using Lemma 4.1, we can say that
the graph associated with a motif GA is a strongly connected
graph.

Theorem 4.1: If an agent starts from a cell in the dis-
cretized search space, then it can reach any other cell in the
search space with a non-zero probability where Assumptions
(2-4) are satisfied.

Proof: Let the search space contain a total of N = 2n×
2n cells and the Markov chain associated with the motion
model be GP . The search space can be formed by a total
of n2 motifs by stacking the motifs next to each other as
shown in Fig. 5. Let each motif ki be associated with a
Markov chain Mi. From Lemma 4.2, each Markov chain
Mi can be represented by a strongly connected graph Gi.

From Fig. 5, we can see that two neighboring motifs
contains a motif between themselves denoted by the dotted
area. Fig. 6 shows the associated digraph of the motif formed
between the two motifs. Again using Lemma 4.2 we can say
that there is always a path to go from one motif to any of
its neighboring motif.

Thus, the directed graph GP formed by the Markov
chain MP associated with the whole search space can be
represented by the union of strongly connected sub-graphs
Gi (of each motif), such that each sub-graph has a path to
and from its neighboring sub-graph. Hence, GP is a strongly
connected graph. Now using Lemma 4.1, we can say that
the probability of reaching any state of MP from any other
state is strictly larger than zero.

B. Source Seeking Algorithms

Using SUSD, a group of N agents will always converge
to the source location given they have a measurement of the
scalar field at all times. This has been proved by Wu et. al in
[5][6]. If vc denotes the group velocity for N agents, then it
can be shown that the direction of vc for any group of agents
aligns anti-parallel to the direction of the gradient field.
This was proved in [5] by showing that i.e. vc

||vc|| .
Oz(rc)
||Oz(rc)||

converges to −1, where rc denotes the position of the group

Fig. 7: Ratio of area covered by an agent with time, for the data in
Fig. 8. The average coverage rate is almost 3.5% per iteration.

center. Therefore, using SUSD, a group of agents will always
converge towards a source in a scalar field.

V. RESULTS

We simulated the steering model in the absence of any
source for a single agent. This was done in order to visualize
the area covered by an agent over 6000 iterations. Fig. 7
shows the percentage of area covered by an agent with
respect to time, while Fig. 8 shows a visual representation
of the area coverage in the search space. A rectangular
workspace of 1.5 × 1.5 was considered and the space was
divided into a grid where each grid cell was 0.1 × 0.1.
The simulation was done for the following parameters: σ =
20, kw = 0.4, ξ = 0.024, v = 0.8 and 4t = 0.01.

The area explored by an agent can then be given as:

A =
NX

NT
Ass (18)

where NX denotes the number of blocks which have been
explored by an agent; NT is the total number of blocks in
the search space and Ass is the area of the search space.

As can be seen in Fig. 7 and Fig. 8, the agent covers a
significant part of the grid while remaining confined inside
the search space. At p = 6000 iterations, the agent has
visited 209 grid cells out of 225 cells implying a coverage
of 92.89%. This validates the claim that an agent is likely to
cover all grid cells in a given search space with a non-zero
probability. The rate at which the agent covers the grid, how-
ever, is much less as compared to other deterministic search
methods, such as the lawnmower strategy [13]. Lawnmower
strategy would require approximately p = 225 iterations to
cover the entire grid. However, such deterministic strategies
rely on a localization service to keep track of the cells which
the agent has visited and has to still visit. This is not the
case in the motion model (3-5), which allows reaching one
of the sources without any knowledge of the agent’s location.
Moreover, the lawnmower strategy requires the search space
to be rectangular. This is not the case in the motion model
(3-5) where the search space can be circular as well.

We also simulated the Hybrid SUSD strategy for a group
of N = 10 agents. This was done for K sources where
K ∈ {1, 2, 4, 6, 8}. The case of K = 2 is shown in Fig. 9. A
search space of 200 × 100 was taken and the sources were
placed at the x,y coordinates (50, 50) and (150, 50). The
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Fig. 8: Area covered by a an agent over p iterations. The agent’s initial position is denoted by the red dot (0.75 0.75).

Fig. 9: Trajectories using Hybrid SUSD for N = 10 agents. White region denotes an area where agents do not get reliable measurements
while the gray region is an area where agents get reliable measurements. The source is denoted by the black circle within gray region.

initial positions of the agents were drawn from a uniform
distribution over the entire search space. For 1500 iterations,
the following parameters were used for the motion model:
σ = 10, kw = 0.94, ξ = 0.024, 4t = 0.01, dth = 10 and
v = 20. Fig. 9 shows the trajectories of the agents using the
Hybrid SUSD strategy. Of N = 10 agents, 8 of the agents
switch to SUSD while the rest explore the workspace using
the exploration model until they reach the source.

A large number of trials were carried out and the following
observations were made. As the number of sources K is
increased, there is a lower likelihood of all the sources to
be localized for a give number of agents N . However, the
likelihood of localization also depends on the initial positions
of the N agents. Hence, we initialize the agents uniformly in
the search space and also assign the initial heading direction
uniformly from the interval [0, 2π]. We noticed that if K = 2,
then if N ≥ 4, the agents are able to find all the sources.
For K = 4, the least number of agents to seek all the
sources came out to be N = 6. We propose that there
might be a relation between K and smallest N that can be
used to seek all the sources. This might be an important
basis to solve multi-modal optimization problems. Another
important observation is that if the area of the region Ωk

around the sources is decreased, the average amount of time
the agents remain in the exploration mode increases. This is
an important implication for localization of sources which are
spread far apart in the search space or which do not provide
measurements at all times, for example chemical plumes.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a bio-inspired strategy, the Hybrid SUSD
which can achieve distributed control of a multi-agent system
for the localization of multiple sources in a search space.
Our simulation results suggest that there might be a relation
between the number of agents N and the number of sources
K that can be localized in a scalar field. This can form a

basis to solve distributed non-convex optimization problems
in the future.
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