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Cooperative filtering for parameter identification of diffusion processes

Jie You, Fumin Zhang, and Wencen Wu

Abstract— This paper presents a cooperative filtering scheme
for online parameter identification of 2D diffusion processes
using data collected by a mobile sensor network moving in
the diffusion field. The diffusion equation is incorporated into
the information dynamics associated with the trajectories of
the mobile sensors. A cooperative Kalman filter is developed to
provide estimates of field values, the gradient, and the temporal
variations of the field values along the trajectories. This leads
to a co-design scheme for state estimation and parameter
identification for diffusion processes that is different from using
static sensors. Utilizing the state estimates from the filters, a
recursive least square (RLS) algorithm is designed to estimate
the unknown diffusion coefficient of the field. A set of sufficient
conditions is derived for the convergence of the cooperative
Kalman filter. Simulation results show satisfactory performance
of the proposed method.

I. INTRODUCTION

Many environmental processes are characterized by both
spatial and temporal correlations and often represented math-
ematically by partial differential equations (PDEs). One of
the typical PDEs is the diffusion equation, which has been
widely used to model the diffusion phenomena such as the
propagation of chemical contaminates in the water or in
the air [1]. In many practical problems, some parameters
in the diffusion equation such as the diffusion coefficient
may be unknown or inaccurate, which requires identification
or calibration [2]. For instance, in the application of smog
modeling and prediction, the unknown diffusivity tensor
in an advection-diffusion PDE can be estimated based on
measurements collected by monitoring stations [3].

There exist many contributions on the issue of parameter
identification of PDEs using static sensor networks [4]-[6].
However, in missions of modeling a relatively large region,
the use of static sensor networks is often impractical due to
the sheer size of the fields and high cost of installing enough
static sensors to ensure coverage of the entire field [7] [8].
For parameter identification purpose, a preferable opportuni-
ty is using mobile sensor networks, which are collections of
robotic agents with computational, communication, sensing,
and locomotive capabilities [2]. There has been an immense
interest in the use of mobile sensor networks to detect,
monitor, and model the environment [2], [9]-[14]. One of
the general approaches of parameter identification is to first
decide optimal locations or trajectories of sensors offline,
then, formulate a least square problem and search for the

The research work is supported by NSF grant CNS-1446461. Jie You
and Wencen Wu are with the Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-
3590, USA. Fumin Zhang is with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
youjl@rpi.edu, fumin@gatech.edu, wuw8@rpi.edu

978-1-5090-1837-6/16/$31.00 ©2016 IEEE

parameters that minimize the error between measurements
of the true state (with true parameters) and the estimated
state [2], [15]. This is usually referred to as performing
the twin experiments in data assimilation literature [16]. To
find parameters that minimize the least square cost function,
PDE:s have to be solved using finite element methods over the
entire spatial domain, and the optimal solution is obtained
by numerical methods for each time step, which requires
high computational power. In many realistic scenarios, it is
desirable and more practical to achieve parameter estimation
while a mobile sensor network is exploring a field instead
of estimating parameters offline. For example, in chemical
plume tracking, the mobile sensor network has no prior
knowledge of the diffusion process, thus, it’s preferable
that the mobile sensor network can estimate the unknown
diffusion coefficient while detecting and tracking the plume
to obtain real-time information about the process. Therefore,
we aim to develop an online parameter identification algo-
rithm that estimates parameters iteratively, which can save
tremendous computational power.

In this paper, we develop a cooperative filtering scheme for
online parameter identification of diffusion processes using
a mobile sensor network. We first incorporate the diffusion
equation into the information dynamics and develop a coop-
erative Kalman filter. Compared to the cooperative Kalman
filter in [10], the proposed filter deals with a diffusion field
instead of a static field and involves more states, which
enables the online estimation of the temporal variations of the
field values along the trajectory of a mobile sensor network.
Meanwhile, we provide a method to estimate the Hessian
that is necessary for the cooperative Kalman filter. Utilizing
the estimates from the filters, we employ the recursive least
square (RLS) method to iteratively update the estimate of
the unknown parameter in the diffusion equation. We justify
a set of sufficient conditions regarding the formation shape
and motion of the mobile sensor network that guarantee
the convergence of the proposed filter. Finally, we present
simulation results to show the satisfactory performance.

The problem is formulated in Section II. Section III
presents the cooperative filtering design and Section IV
shows the convergence proof. Simulation results are present-
ed in Section V and conclusions follow in Section VI.

II. PROBLEM FORMULATION

A. Diffusion processes

Consider the two-dimensional (2D) diffusion process de-
fined on a domain Q € R?:

L{g:’t) = 0V22(rt), reQ, (1)
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where z(r,¢) is the concentration function, 8 > 0 is a con-
stant diffusion coefficient, and V? represents the Laplacian
operator. In practical applications such as environmental
monitoring, the exploration domain Q is much larger than
the source and sensor dimensions so that the boundary can
be modeled as a flat surface. Thus, we assume Dirichlet
boundary conditions on the boundary 0Q [17],

z2(rt) =0, re dQ. )

Many natural processes can be described by the diffusion
equation (1). In many scenarios, 6 is unknown or inaccurate,
which requires identification or estimation.

B. Sensor dynamics

Consider a formation of N coordinated sensing agents
moving in the field, each of which carries a sensor that
takes point measurements of the field z(r,7). We consider
the sensing agents with single-integrator dynamics given by

fi(t):ui(t)?izlaza“'7Na (3)

where 7;(t) and u;(t) C R? are the position and the velocity
of the ith agent, respectively.

In most applications, the sensor measurements are taken
discretely over time. Let the moment when new measure-
ments are available be #;, where k is an integer index. Denote
the position of the ith agent at time #; be r,’? and the field
value at r¥ be z(%,k). Let ¥ = [r£ vk ] be the center of the

cxoley

formation at time 1y, i.e., r{‘ = NZ

of the ith agent can be modeled as

i—1 rf-‘. The measurement

p(rf k) = 2(rf k) +ny, 4)

where n; is assumed to be i.i.d. Gaussian noise. We have the
following assumption for the sensing agents.

Assumption II.1 Each agent can obtain its position rf‘ and
the measurement of concentration value z(rf,k), and share
these information with other agents.

The problem is formulated as: under Assumption II.1,
develop an online parameter identification algorithm that
estimates the unknown constant diffusion coefficient 8 of
the diffusion equation (1) based on the information collected
by a mobile sensor network moving in the diffusion field.

III. COOPERATIVE FILTERING FOR PARAMETER
IDENTIFICATION

This section describes our approach for parameter iden-
tification of the diffusion model (1). Before discussing the
algorithm, we first introduce the numerical scheme for the
diffusion equation. We then derive the information dynamics
and construct a cooperative Kalman filter. Next, we show
how to estimate the Hessian that is necessary for the coop-
erative Kalman filter. Finally, we show how to use the RLS
method to iteratively update the estimate of 0.

A. Numerical scheme for the diffusion equation

In order to run RLS to estimate 6 based on discrete
measurements, we discretize the diffusion PDE (1) at the
formation center 7. The discretization of the PDE requires
approximating spatial and temporal derivatives by means of
finite difference method.

Assume the current time step is k. Then the term %
can be approximated by
az(ert) Nz(r’é,k—l—l)—z(r';k)
ot =ty 1 ’ )

and V?z(re,t) can be expressed with a finite difference
approximation as:

%z(re,t)  9%z(re,t)
V2 )~ (] CH
dre,t) ?rex + 9%rey
2(rk— Ary - x, k) = 22(rF k) 4+ 2(rk + Ary - x, k)
~ A2 (6)
rx
n 2(rg — Ary -y, k) =22(rf, k) +2(r6 +Ary -y, k)
Ar? ’
)7

where t, is the sampling period, x = [1 0]7 and y = [0 1]7
are unit axis vectors, Ary and Ary are the grid sizes along
the x and y directions, z(r%, k) is the field value at position ¥
at the current time step k, and z(rX,k — 1) is the field value
at position rf at the previous time step kK — 1. By employing
formation control, we can arrange four agents in a symmetric
formation as shown in Fig. 1. Then we have Ar, = ||rf —
Al = rk=r& ||, Ary = ||rk = k|| = ||r% — #4]|. For a symmetric
formation, Ar, = Ary, which can be considered as a constant
value. Substituting the values of Ary and Ary, into Equation
(6), we get
2 2(r k) +2(r8, k) +2(75, k) +2(rf k) — 42(r¢ k)
Vz(re,t) =~ ,
Ar?

(7
where z(r¥,k) for i = 1,2,3,4 are field values at positions
rf-‘ at time step k. Applying the finite differences (6), (7) to
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Fig. 1. Formation of four agents

Equation (1) gives:

Z(I’f,k+ 1) 7Z(rjz.,k) —9. ?:lz(rf{ﬂk) _4Z(rlc{7k)
ts Ar?

If we can get the estimates of z(rk,k+ 1), z(r*,k), and
? 1z(rk,k), then 6 can be estimated using RLS based
on the discretized model (8). It should be noted that the
. . . . Ar/%—}—Ar%
sampling time 7; must obey the inequality #; < — 55— for

the discretization method to converge [17].

. (®)
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Remark IILI.1 Even though we only consider four agents in
the above derivative, it should be noted that our scheme
can be readily extended to N > 4 case by following the
implementation of standard finite-volume method.

B. The design of the cooperative Kalman filter

We first introduce the motivation of designing a coopera-
tive filter by pointing out the difference between z(r%,k+1)
and z(r’cc ,k) in (5). By designing a cooperative filter similar to
the one developed in [10], z(r¥, k) may be directly estimated
by combining the measurements taken by the sensing agents
at time step k. However, at time step k+ 1, the formation
center of the group is at position X!, Therefore, the same
filter can only provide the estimate of z(#**! k+ 1), not
z(rk,k41). In order to estimate the temporal variations of
the field value in (5) along the trajectory of the mobile sensor
network, we first need to derive a new cooperative filter to
estimate both z(r%, k) and z(r%,k+1).

To construct a cooperative Kalman filter to obtain the
estimates of z(r¥,k) and z(r%,k+1), we first analyze the
dynamics of the diffusion field value along the trajectory
of the formation center r. according to

tlre) = Pl e O2le)

dz(re,t)
dr, dt ot ’

ot
©))
where Vz(r.,t) is the gradient of z(r.,r). Substituting Equa-
tion (1) into (9), we obtain
Vi(re,t) - Fe+ OV22(re ).

Applying the finite differences to each term of (10) at time
t =1t;_1 and at position r, = rk ! gives:

k k—1
) Z2(rf k) —z(rs k—1)
Z(rcvt)|z:zk,|ﬁr(.:r’;" = : ’

= Vz(rc,t) O

2(re,t) = (10)

Is
(rg —re )T Va(rg ! k1)

, (I

VZ(VW )rC‘t =ty_1,tc =p-1 =
c ts

L2l k—1) —4z(rf k1

structure of the field, but also be used in the motion control
that will be introduced in Section III-F. We derive the total
time derivative of Vz(r.,?) as

. dVz(re,t
Vz(rcat):H(rwt)";c+ Za(: )7 (14)
where H (r.,t) is the Hessian matrix, and avza(r‘ ) is the high-

er order term, which can be considered as noise. By discetiz-
ing Equation (14) at t =t;_y,r. =r* L and t = t,r, = k=1,
respectively, we can get that Vz(r’cC k) and Vz(rX k+1)

evolve according to the following equations:

VZ(r];,k)sz(rg_l,k71)+H(r];_l k— 1)(rk7rk l)v

: 1 =1 gy k _ k=1 (5)
Va(rk k+1) = Vz(rk ™ k) + H(E ) (=i,
Define the information state as X(k + 1) =

(2%, k), V20 k), 2% K + 1), V20 k + 1D]7. By combing
(12), (13), and the (15), the information state evolves
according to the following equation:

X(k+1) = Ag (k)X (k) + U (k) + w(k),

where w(k) is the zero-mean process noise with covariance
matrix Q, the matrices Ay (k) and U (k) are defined by

(16)

T | 0
_ ! Lo 0 0
Ag (k) = 5 ;
o (k) 0 0 1 42;? (rk — pk=1yT
0 0 0 163%)
(17)
0 _
tAré i= lz(rf lvk_l)
rk 1 —1 k
Uk)= H(re 16k4 )(Ck ) , (18)
A Lic12(r75k)

HOE T Bk A

where H(r¥~1 k) is the Hessian matrix. We observe that U (k)
)is determined by the estimates of z(r* ',k — 1), z(r¥,k) and

OV22(re,1) =6

‘t:tk,l,rc:r

Arx

Substituting the finite difference equations (11) to Equation
(10) gives the information dynamics of z(rk k) as

41,- 6

k _ s Yk k—1
Z(rcak)_<1_ AI")% ) ( k_l
)V ),

C

6
Zr;cerk Lk—1)

12)

where ék is the estimate of 6, which can be obtained from
the RLS method that will be introduced in Section III-E.
Similarly, we also obtain the dynamics of z(rX,k+ 1) by
discretizing Equation (10) at time ¢ = #; and at position

Te=Tg

4ts'ék -1 tsék 4 k
2 k+1) = <1— A2 >Z(r’£ K+ 55 22k

+ (k=Y V(i k). (13)

Furthermore, we are also interested in estimating Vz(r.,t)
since these estimates will not only provide insights of the

the Hessian matrix, which will be specified in Section III-D.

A measurement equation is also required for the cooper-
ative Kalman filter. Assuming r,’.‘ and rff are close to rk 1
the concentration can be locally approximated by a Taylor

series up to second order as

k=) (k= )+ (P =AY V(A k1)

SO AT HGA k= (A A,

2(rf k)~ 2(re )+ (o =DV R (19)
(A ATHEA )= A,

Then, we denote the measurement vector as P(k) =
[p(rjl(ilakfl)"'p(rlkvilak ) (r]](ak) (rNak)] » which
is modeled as,

P(k) = C(k) - X (k) + D(k)H (k) + v(k), (20)

where H(k) = [H(r"" ',k — 1) H(r*"",k)]" represents the

estimate of the Hessian at the center A1 in a vector form,
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v(k) is the zero-mean measurement noise with covariance
matrix R.

L= o 0
I S, :
cy=| o e 0 (rfff(r)fffl)T @
L0 0 bk
and
LA A @A AT 0
Lk A @K )T 0
— | 2y N
D) 0 HOf=rE @ - |
0 LA )@ ()T
(22)

where @ is the Kronecker product. In this paper, we as-
sume the covariance matrices Q and R are known through
measurements or computation [10].

Moreover, from Equation (8), we observe that there is a
constraint between the state z(r¥,k+ 1) and z(rX,k) at each
step. Hence, we add a state equality constraint for the above
Kalman filter:

G(k)- X (k ) d(k), (23)
where G(k) = [1 0 ( ) 0] and d(k) =
IA% ? 12(r; k=1 g — 1). We observe that the proposed

Kalman filter is based on the time- -varying information
dynamics (16) with the state equality constraint (23). This
type of Kalman filter with state equality constraint has been
previously investigated in [18].

C. The cooperative Kalman filter equations

By following canonical procedures in [18], the equations
for Kalman filter with state equality constraints are given as
(1) the one-step prediction,

X (k) =Agtk— D)X (k—1)+U(k—1);
where X (k— 1) is the current constrained state estimate and
X~ (k) is a prior unconstrained state estimate.

(2) error covariance for the one-step prediction,

(24)

P (k) =Ag(k—1)PF(k—1DAJ(k—1)+Q; (25
(3) optimal gain,
K(k) = P- (k)CT (K)[C(k)P- (K)CT (k) +R] ! (26)

(4) updated unconstrained estimate,

X (k) =X (k) + K (k) (P(k) = C(k)X ™ (k) — D(k)H (K));
27
(5) error covariance for the updated estimate
P (k) = (I = K(k)C(k)) P (k): (28)
(6) updated constrained estimate,
Xt (k) =X" (k) = PX ()G (K)[G(k)P (k)G" (k)] 29)

(G(k)X T (k) —d(k)).

D. Cooperative estimation of the Hessian

Estimates of z(%,k), z(r*~!,k—1), and the Hessian H (k)
in Equation (18) are needed to enable the cooperative
Kalman filter.

1) Estimates of z(r¥,k), z(r’"!,k—1): Since the sensor
measurements p(rf,k) and p(rllffl,kf 1) are available in the
measurement vector P(k), one straightforward and simple
way is to replace z( ,k) and z(rk Uk —1) with the sensor
measurements p(r, k) and p(r 1 k—1).

2) Cooperative estimation of the Hessian: Using the co-
operative Kalman filter, we can obtain a prediction for X (k)
as X~ (k) =Ay(k—1)XT(k—1)+U(k—1). If we assume
the number of sensor N > 4 and the formation is not co-
linear, we have P(k) = C(k)-X~ (k) +D(k)H (k). The Hessian
estimate can be solved by using the least mean square

method, A (k) = (D(k)"D(k)) " D(k)T (P(k) — C(k)X~(K)) .

E. Recursive Least Square Estimation

In this section, we use the RLS method to iterative-
ly update the estimate of 6 in the diffusion equation
(1). We do this using the information state X(k+ 1) =
[2(rK k), Va(rk, k), z(r%, k 4+ 1), Vz(rk k + 1)]7 obtained from

the filter to calculate the temporal variations of the field

2(r k+1) 2(rK k)

value along the trajectory at each step. On
the other hand, by replacing Y lz(rk k) with the sensor
measurements Z: (rfC k), we can estimate the discrete
Laplacian operator directly using sensor measurements P(k)
from the agents according to Equation (7). Therefore, the
diffusion coefficient can be directly estimated without the
need of numerically solving the diffusion equation. Given
an initial estimate for the diffusion coefficient, a simple
application of the RLS method can iteratively update the
estimate of 6. Following the canonical procedure of RLS
estimation outlined in [19], we derive the following equations

1) 20t ;
Z(rc7k+ 1[1 Z( Uk) —V2Z(rl(c?7k)9k71)7

O = 01 +g(k) <

8k = (k= )V(A 07 [Pelh Rk = V(A BT 4R

n(k) = (1-gV22(40) m(k—1).

where g(k) is the estimator gain matrix, 1 (k) is the estima-
tion error covariance matrix, and R, is the noise covariance.

FE. Formation and motion control

Control laws for the velocities of the agents are required
so that the mobile sensor network can move along a certain
trajectory while maintaining a desired formation. We view
the entire formation as a deformable body. Thus, there are
two parts of control: motion control and formation control.
With the gradient estimates provided by the cooperative
Kalman filter, the motion control for the agents can be
easily realized by setting the velocities of the agents to
be aligned with the estimated gradient direction. Thus, the
mobile sensor network can achieve simultaneously parameter
estimation and gradient climbing. Furthermore, there exists
several results about the formation control for mobile agents
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[10] [20]. We omit the detailed design of control here due
to space limitation. Interested readers can refer to [10] [20].

IV. CONVERGENCE ANALYSIS OF THE COOPERATIVE
KALMAN FILTER

In this section, we prove the convergence of the coop-
erative Kalman filter. Theorem 7.4 in [21] states that if
the time-varying system dynamics are uniformly complete
controllable and uniformly complete observable, the Kalman
filter for this system converges. With this result, we will
establish a set of sufficient conditions for the mobile sen-
sors such that the uniformly complete controllability and
observability of the Kalman filter can be guaranteed. Let
®(k,j) be the state transition matrix from time f; to z,
where k > j. Then, ®(k,j) = Ay(k—1)As(k—2)---Ay())
and ®(k, j) = ®~'(j,k). We have the following lemma.

Lemma IV.1 For ®(k,j) as defined above and C(k) as
defined in (21), we can have

& (1 -ATHT 0 0
. 0 I 0 0
CD(kvj) = 2x2 j— ) (30)
0 0 g (A —lTHT
0 0 0 by
and
§9 (r]]“1 r{.;l)T 0 0
-1 _ J-I\T
C(k)@(k,]) = 69 (,{(V e ) 0 k 0171 T )
0 0 §9 (ri—ri)
o 0 & (K —rlHT |
(1)
where éé:(]_Arzek 1)( Azek 2) ( Arze')

Let’s first restate the definitions of uniformly complete
controllability and uniformly complete observability, respec-
tively (modified from Definitions in [21]).

Definition IV.2 The proposed cooperative filter is uniformly
complete controllable if there exist T > 0, Ay > 0, and
12 > 0 such that the controllability Grammian €(k,k— 1)) =
Z/ =k—1q (k,])QCI)(k,])T satisﬁes )“116><6 < Q:(kak_ Tl) <
Molgxe for all k > ty. Q is the covariance for the noise w(k).

In the following procedures, there exist some positive
real numbers Aj,Az,---Ay. All of these real numbers are
time-independent bounds for various quantities, the values
of which do not affect the correctness of our discussions.
Note that, in this paper, a relation between two symmetric
matrices A;] < A, means that for any vector s with com-
patible dimension, there exists sTA1s < sTAys. We have the
following lemma for uniformly complete controllability.

Lemma IV.3 The proposed filter is uniformly complete con-
trollable if the following conditions are satisfied:

(Cdl) The covariance matrix Q is bounded, i.e., A3l <
0 < M4l for some constants Az, A4 > 0.

(Cd2 ) The speed of each agent is umformly bounded, i.e.,
|l — || < As for all time j, fori=1,--- N, and for some
constant As > 0.

(Cd3) The estimated parameter éj is bounded, i.e., 0 <
0j < A¢. By properly selecting the sampling interval t; and
formation size Ary, we can make 0; satisfy that 0 <1 —

4” 9 <1 for all time j, which means Ag < Arx
Proof: Based on condition (Cdl), we
obtain that the controllability Grammian satisfies

Xy o Pk, )Pk, j)T < €(k,k—11) and C(k,k— 1) <
lejzk_fl ®(k, j)®(k, j)T for any k and 7| such that k > 7;.
Therefore, if we can find the uniform bounds for each of
these semi-definite symmetric matrices, i.e., ®(k, j)®(k, j)T,
the overall bound for the controllability Grammian can
be obtained readily. We apply Lemma IV.l1 to compute
D(k, j)@(k, )" ie

O(k, j)®(k,j)" = (32)
&g +118r(k, I (8r(k, )" 0 0
or(k, j) hx2 0 0
0 0 Ey+lI8r(k I (8rk )T
0 0 or(k, j) by
where we denote dr(k, j) = k=1 — rt
Using basic linear algebra, we can obtain the

minimum  eigenvalue of matrix (32) as  Apn =

3 (187K, )2+ &g+ 1= /187K, )2+ &g +1)2 —4-&5)

and the maximum eigenvalue as Aomace

5 (1870 IR+ &+ 1+ /187, )2 +E+112—4-&5)

By definition, we know that Or(k,j) is the averaged
movement over all agents between time j and k. Then, the
condition (Cd2) indicates that ||0r(k, j)|| < (k— j)As < 1145
for all j € [k—1y,k]. Due to condition (Cd3), we can see that
0 < &, < 1. Since the term (||6r(k, j)||>+ &5 +1)*—4-&5 >
(5 — 1)> >0, it can be proven readily that A, reaches
its minimum value when |[[or(k,j)[| = TiAs and &
approaches zero That means the minimum value of
/’Lmln is 7L7 > (||TIASH2 +1- (HTI)L5||2+1)2) = 0. On
the other hand Amax assumes its minimum value when
|6r(k, j)|| = T1As and &y is one. This maximum value is
As = $(|m14s]]> + 24+ /([[11As]|2 +2)2) > 0. Therefore, we
can conclude that A7l < ®(k, j)D(k,j)T < Aglgxe for
all time j € [k — 71,k]. Hence, A3A771lsx6 < C(k,k—11) <
Af4)~8T116><6- Let }Ll = 13171'1 and }\,2 = )4)»31’1. Thus,
according to Definition IV.2, we have proved the uniformly
complete controllability claim. [ ]

Definition IV.4 The proposed cooperative filter is uni-
formly complete observable if there exist T > 0, Ay >
0, and Ay > 0 such that the observability Grammian
O(kk— 1) = X5, o ®T(j,k)CT(jIRTIC(j)D(j,k) satis-
fies Molgxe < O (k,k— 1) < Aolsxe for all k > 1. Here R is
the covariance for the measure noise v(k).

To prove the uniformly complete observability, we require
one elementary Lemma IV.5 [10] and the Lemma IV.6 to
establish the sufficient conditions for a moving formation.

Lemma IV.5 Suppose two 2 x 1 vectors a = [a; ap)7 and
b= [by by]" form an angle ¥ such that 0 <¥ < . Then the
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minimum eigenvalue A, of the 2 X2 matrix M = a- al +b-
bT is strictly positive, i.e. Apyin >0

Lemma IV.6 The proposed Kalman filter is uniformly com-
pletely observable if (Cd2), (Cd3) and the following condi-
tions are satisfied:

(Cd4) The number of agents N is greater than or equal 4.

(Cd5) The covariance matrix R is bounded, i.e., A1 <
R < A2l for some constants Aqy, A1 > 0.

(Cd6) The distance between each agent and the formation
center is umformly bounded from both above and below, i.e.,
Ms < lrf =7 < Aaa and Az < |l7] =R < Aag for
all j, fori=1,2,...,N, and for some constants A3, A4 > 0.

(Cd7) There exists a constant time difference 1, and for
all k > Ty, there exists a time instance j; € [k— T2, k|, as well
as two agents indexed by iy and iy, such that the following
condition is satisfied: The two vectors, rj2 V2l and

rljz2 vV form an angle Y that is umformly bounded

away from 0 or m.

(CdS8) There exist the time instance j, and two agents i)
and iy as given by (Cd7), such that the following condition
is satisfied: The two vectors, ’}']2 —r2 and rljz2 — rgrl form

an angle » that is uniformly bounded away from 0 or T.

Proof: Based on condition (Cd5), we first
observe that the observability Grammian satisfies
Ay T @ (RCT (ICU)D( k) < O(k,k — 1) and
O(kk — 1) < A Xh i o @7 (1, K)CT (J)C(j)®(j,k) for
any k and 7, such that ’k > 7. Then the uniformly
complete observability can be proved by finding
the positive uniform upper and lower bounds for

Z];-Zk_TZ @7 (j,k)CT (j)C(j)P(j,k) for all k > 5. According
to Lemma IV.1, we can get
@7 (j,k)CT (J)C()P(j,k)

NEG NEg (= )T
I S A ST
0 0
0 0
0 0
0 0
N NEg(rt—rs )T - 63
NEg(rd =ty N (] = Ay (] k)T

Due to conditions (Cd2) and (Cd6), we can ob-
serve that each element of the above matrix is bound-
ed above, i.e., ®(j,k)TC(j)TC(j)®P(j,k) < A17 for some
constant A7 > 0. For the lower bound, we can use
conditions (Cd4), (Cd7) and (Cd8) to prove that there
ex1sts the lower bound A;g > 0 such that A3 <
Z] k-1, PO J)TC(H)TC(j)®@(j,k). Consider the two time
instances indexed by ji, jo e][k— ‘L'27k; where J1 < jo. If
we can prove the matrix I=®" (j;,k )C(j1)®(j1,k)+
CIDT(jg,k)CT(]z)C(jg)CID(]g,k) has a lower bound, then
le‘»:k42 (j,k)TC(j)TC(j)®(j,k) has a lower bound. Since
(I)(.Ilvk) - @(]1,]2)@(]27]{), we have
I=[®(j1,/2)®(j2, k)" C" (j1)C(1) (i1, j2) P2, k)

+ @ (2, k)CT (j2)C(j2)®(ja, k)

=T (jo,k)[ @ (j1,12)CT (j1)C(1) Pt j2) +CT (j2)C(j2)]@(ja k)

=07 (jo, )1 (jo,k), (34)

where I} = D7 (j1,j2)CT (j1)C(j1)®(j1,j2) +CT (j2)C(ja).

By using the fact that Z?’:l(r}irl —r{lrl) =0, we have
T (j2)C(j)
N -0 ) 0
R LA
0 0 N(rf.'2 —rf.'rl)
(35)
0
| e ,
T =Y =BT NGE = o =TT
®" (j1,72)CT (j1)C(i) @1 jn)
NEg NEg(rd ! —rE T
_ Nge( i 1 Jz*l) Z (J] 1 ri:z*l)(r'jlflirngl)T
0 0
0 0
(36)
0 0
NEZ NEg(rd' =T
NEg(rd =™y E (=D T

Then the matrix / can be obtained by combing (35) and
(36) together. Consider two agents i; and i in (Cd7) and
(CdS8), we can further decompose /; as the sum of two
matrices: a positive definite matrix I, and a positive semi-
definite matrix /3. Thus, the low bound of matrix /; can be
proved by verifying that the matrix I, is positive definite and
I3 is positive semi-definite.

N O 0 0
0 I 0 0
L=h+h=| o o N N(r2 — 2T |+,
0 0 N(rk2- rj-rl) Is
) (3D
where I = (112 L 1)( j2~1 i’lz_l)r + ( ,22_1 -
1y, o1 I j 1
PN N and Iy = NG -

rhT +(r’12 réz)(rlj2 réz)T—k(r” r2 1)(rl’z2 P2 1)T.
Because conditions (éd7) and (CéS) are satisfied, using
Lemma IV.5, we can get that there exists Aj9 > 0 such that

L > A19I6><6~ The residual term I3 is

N€2 Née( J] 1 rngl)T
B | NE (AT Is
0 0
0 0
0 0
0 0
N Nl T L B39
NE(rlt —r2™h) I
where I = YN (PPN — k27PN - DT - T
rngl)( ljlz 1 - 1l jz 1)' _ (r[[; r jz 1)( =1 _ rngi')T +
Z{\i(ll . ]1*1)(r11*1 11*1) (r(]l f rﬂrl)(ré‘fl—
rgz_]) ,and [; = ):,, l(r’ rél)(r{‘—rgl)T_-i-N(rgl—rjgz_l)(fgl—
S e e [ e L (O (A O
For I;, due to the formatlon control we should have
(rll_rc )( ]l ) Zl—tl,lz( 12_’{2)( ’JZ)T>O

when N > 4. Therefore, using Lemma IV.5, we can readily
get that I3 is a positive semi-definite matrix. The Weyl’s
theorem [10] can then be applied to prove that there exists
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Ay > 0 such that I} > Axlsxe. Hence, O(k,k — ’Cz) is

uniformly bounded below by O(k,k— 1) > Aolgxs. [ |

V. SIMULATION RESULTS

To demonstrate the performance of the proposed approach
for online parameter estimation for diffusion processes, we
consider a well-known 2D diffusion equation (1) with the
nominal value of 8 = 0.6. The initial condition is illustrated
in Fig. 2(a), in which the maximum value is at point (20,30).
The whole domain of PDE is a rectangular area 0 < x <70,
0 <y <90. We implement an implicit ADI finite-difference
scheme in MATLAB, with 100-by-100 spatial grid. We add
1% (in variance) white noise to measurements taken by
sensors. A computational time step of 0.1s is chosen for
the simulation, which satisfies the stability requirement of
finite-difference method. In the simulation, we select the
initial locations of four sensing agents represented by the
red, blue, green, and purple stars as shown in Fig. 2(a).
At each time step, the sensing agents take measurements
of the field, run the proposed cooperative Kalman filter as
well as the RLS algorithm to obtain the estimates of the
diffusion coefficient 8, and move along the gradient direction
estimated by the cooperative Kalman filter while converging
to a desired formation. The trajectory of the center of the
formation is shown in Fig. 2 (the blue dots). Initially, we set
the estimate @) = 2. The result of the proposed method is
presented in Fig. 3. As we can observe from the figure, 6
converges to the nominal value.

(©) (d)

Fig. 2. Gradient climbing trajectory of the mobile sensor network.

200 400 600 800 1000 1200 1a00 1600
Time

Fig. 3. Estimation of diffusion coefficient 6.

VI. CONCLUSION

We propose a novel filtering scheme for performing online
parameter estimation for diffusion processes utilizing a mo-
bile sensor network. Utilizing the filtered state as inputs, we

employ the RLS algorithm to realize online estimation of the
diffusion coefficient. Theoretical justifications are provided
for the convergence analysis of the cooperative filter. Sim-
ulation results show satisfactory performance. Future work
includes extending the proposed algorithm to spatially variant
PDE models and demonstrating the methods in experiments
involving robotic mobile sensor platforms.
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