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Abstract— In a recent SIAM Journal on Control and Opti-
mization article, our team analyzed the robustness of a class
of adaptive three-dimensional curve tracking controls for free
moving particles, using penalty functions and robustly forward
invariant sets with maximum allowable perturbation bounds.
This allowed us to track curves, identify unknown control gains,
and provide predictable tolerance and safety bounds. In this
work, we provide a variant of our SIAM article. We provide a
new method to maintain robust forward invariance of compact
regions in the state space, under arbitrarily large perturbation
bounds. Our new technique entails scaling certain control
components. It provides a substantially different algorithm from
our SIAM article and is suitable for real time applications.
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I. INTRODUCTION

This paper continues our search for ways to ensure curve
tracking under the uncertainties and state constraints that
prevail in robotics. See [9], [11], and our earlier conference
papers for two-dimensional (2D) curve tracking; and [12]
[13], and [14] for three-dimensional (3D) analogs. Our search
was motivated by our group’s 2011 field work at Grand Isle,
LA, which used marine robots and curve tracking controls to
study residual pollution from the 2010 Deepwater Horizon
oil spill disaster in the Gulf of Mexico; see [16], and see [6],
[18], [19], and [23] for more motivation.

Curve tracking aims to ensure that robots converge to a
parallel tracking of a desired curve, and has been studied
for over 20 years; see [1], [2], [17], and [20]. Asymptotic
tracking under curve tracking controllers was shown using
nonstrict Lyapunov functions and other traditional methods;
see [2], [17], and [20]. Through experiments, the controls
were shown to give good performance, even under severe
perturbations, in farming [7], obstacle avoidance in corridors
[21], and ocean sampling [20]. However, experiments do
not ensure robustness to perturbations under all possible
conditions, because only finitely many operating conditions
can be tested in finite time, and experiments can be costly and
hazardous. Hence, experiments do not lend themselves to the
search for values for the maximum allowable perturbations.

This motivated our more mathematical approaches. One
general strategy to ensure robustness is ‘strictification’,
which converts nonstrict Lyapunov functions into strict ones;
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see [8] and [15]. By strictness, we mean that its time
derivative is negative along all trajectories of the closed loop
system at all points outside the equilibrium. Strict Lyapunov
functions are useful for proving input-to-state stability (ISS)
under uncertainty [3], and for redesigning controllers to
achieve ISS with respect to perturbations. See, e.g., [9] where
we converted a nonstrict Lyapunov function from [21] for 2D
curve tracking into a strict one, and [14] for 3D analogs.

Although strict Lyapunov functions are effective for back-
stepping, ISS, and much more, they may not be sufficient for
state constrained problems where one seeks tolerance and
safety bounds. This is because Lyapunov decay estimates
may give conservative estimates for the largest possible
perturbations for maintaining forward invariance of sublevel
sets of Lyapunov functions [14]. Therefore, our work [9]
combined strict Lyapunov functions with robust forward
invariance for 2D hexagons, including formulas for largest
allowable perturbations for ensuring forward invariance of
the hexagons. Then [13] and [14] generalized the approach
from [9] to 3D, using paired hexagons. Robust forward
invariance of a set H for a system Ẋ(t) = F (t,X(t),δ (t))
means forward invariance of H for all measurable bounded
perturbations δ : [0,∞)→D , or equivalently, strong forward
invariance of H for the inclusion Ẋ(t) ∈ F (t,X(t),D),
where D is the set of all allowable values for δ [14]. Hence,
robust forward invariance means that all solutions starting in
H stay in H , regardless of which D valued measurable
essentially bounded function is used in the system.

A key observation from [14, Remark 2] is that for fixed
penalty functions in the control and a fixed desired bounding
set D for the perturbations, we can build the hexagon pairs
(depending on D and the control) to ensure robust forward
invariance of the hexagon pairs under all D valued pertur-
bations. However, a potential drawback was that larger D’s
led to robustly forwardly invariant hexagon pairs that include
points that are very close to the boundary of the workspace,
as well as points that correspond to the robot being very far
from the curve being tracked, and an analogous statement
holds for 2D curve tracking. Since this can allow robots to
move close to undesirable regions, it can be a disadvantage.

To help overcome the preceding challenge in the 2D
case, our work [10] used the following scaling algorithm to
compensate for arbitrarily large perturbation bounds. First,
we fixed any suitable 2D hexagon shaped compact region
H in the workspace and a value δ̄ > 0 for the perturbation
bound. Then, we scaled the steering constant and the penalty
functions in the control by a constant M∗ ≥ 1 (depending on
H and δ̄ ) and proved robust forward invariance of H for
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the closed loop system under all scalar perturbations that are
bounded by δ̄ . This eliminated the need to move the hexagon
legs too close or far from the boundary of the workspace, and
can help ensure robust, safe operation under perturbations.

In this note, we extend the 2D scaling approach from
[10] to the 3D curve tracking dynamics from [14], to ensure
tracking under control uncertainty and state constraints and
identification of unknown control gains under arbitrarily
large perturbation bounds using adaptive control; see [4]
and [5] for background on adaptive control. As in [10], a
benefit of the new method in this note is that it eliminates
the need to include points in the hexagons that may be too
close to the boundary of the state space. However, while [10]
used only one scaling constant, our 3D dynamics will lead
us to use three different scaling constants. We can extend
this approach to cover input delays, by converting our strict
Lyapunov functions into Lyapunov-Krasovskii functionals,
using ideas from [14, Section 7.4]. Due to length restrictions,
we will not include time delays here, but the effects of input
delays can be captured by the perturbation terms using a
variant of [14, Section 6.3] that we leave to the reader.

II. BACKGROUND AND MAIN RESULTS FROM [14]
To make our work more self contained, we review the 3D

curve tracking model and robust forward invariant sets from
[14]. Then we present our new work, starting in Section III.

A. Model and Controls
The model describes the motion of a free particle, and a

second particle (called the closest or projection point) that
is confined to a specified 3D curve and that locally has the
shortest distance to the free particle. Let r1 be the position
of the second particle, x1 be the unit tangent vector to the
curve at r1, y1 be a unit normal vector, and z1 be a binormal.
The velocity of the point is in the direction of x1.

Let r2 be the position of the free particle moving at unit
speed, x2 be the unit tangent vector to the trajectory of its
moving center, y2 be a corresponding unit normal vector,
and z2 = x2× y2. With the speed ds

dt = α , the dynamics of
the free point and the closest point on the curve from [14]
and [22] are

ṙ1 = αx1
ẋ1 = ακny1 +ακgz1
ẏ1 = −ακnx1
ż1 = −ακgx1,

ṙ2 = x2
ẋ2 = uy2 + vz2
ẏ2 = −ux2
ż2 = −vx2,

(1)

where the normal curvature κn and the geodesic curvature
κg are associated with the curve at the closest point, and the
steering controls u and v we will chosen later.

Following [14], we write the controls as
u = a1(x1 ·y2)+a2(y1 ·y2)+a3(z1 ·y2) and
v = a1(x1 · z2)+a2(y1 · z2)+a3(z1 · z2),

(2)

where the coefficients ai will be specified. We also set
ρ1 = (r2 − r1) · y1 and ρ2 = (r2 − r1) · z1, and we use
the shape variables ϕ = x1 · x2, β = y1 · x2, and γ = z1 ·
x2, and the spherical coordinate transformation (ϕ,β ,γ) =(

cos(ζ )cos(θ),−sin(ζ )cos(θ),sin(θ)
)
. Finally, we choose

a1 = µ, a2 =−h′1(ρ1)+
ακn

ϕ
and a3 =−h′2(ρ2)+

ακg
ϕ

, (3)

where µ > 0 is any fixed constant called the steering constant
and the C1 penalty functions hi : (0,∞)→ [0,∞) are

hi(ρi) =

 h̄i

(
ρi +

ρ2
ci

ρi
−2ρci

)
, ρi ∈ (0,ρci)

h̄i
ρci

(ρi−ρci)
2, ρi ≥ ρci

(4)

for i = 1,2 for fixed constants h̄i > 0 and (ρc1,ρc2)∈ (0,∞)2,
and we assume that κn and κg are C1, bounded, and non-
positive valued. Then α = ϕ/(1− κnρ1− κgρ2) [14]. This
is a slight generalization of the controls from [14], which
required that h̄1 = h̄2. Our basic tracking goal is to ensure
that limt→∞(ρ1,ζ ,ρ2,θ)(t) = (ρc1,0,ρc2,0) for all initial
conditions, to ensure parallel motion relative to the curve
that is being tracked while maintaining sufficient separation
between the robot and the curve [14]. Our state constraints
will ensure that the ρi’s and ϕ stays positive.

Using [14, Section 5.2] (except with different h̄i used in
the penalty functions hi) with the control components (3)
scaled by G/Ĝ, we obtain the augmented adaptive 3D curve
tracking dynamics with parameter estimate Ĝ given by

ρ̇1 = −sin(ζ )cos(θ)

ζ̇ = − cos(ζ )κn
1−κnρ1−κgρ2

1
cos(θ)

(
G
Ĝ
− cos2(θ)

)
−ακg sin(θ)sin(ζ )

cos(θ)

+G
Ĝ

h′1(ρ1)cos(ζ )
cos(θ) − G

Ĝ
µ sin(ζ )
cos(θ) +δ1

ρ̇2 = sin(θ)

θ̇ = −κg cos2(ζ )cos(θ)
1−κnρ1−κgρ2

+ G
Ĝ
(−h′1(ρ1)

+ κn
1−κnρ1−κgρ2

)
sin(ζ )sin(θ)

+
[

G
Ĝ

(
−h′2(ρ2)+

κg
1−κnρ1−κgρ2

)
cos(θ)

]
−G

Ĝ
µ cos(ζ )sin(θ)+δ2

˙̂G = (gmax−Ĝ)(Ĝ−gmin)

Ĝ

(
∂U
∂ζ

A1(Y )+ ∂U
∂θ

A2(Y )
)

(5)

on the augmented state space Xa = (0,∞)× (−π/2,π/2)×
(0,∞) × (−π/2,π/2) × (gmin,gmax), where the unknown
measurable essentially bounded functions δi represent un-
certainty, G is an unknown control gain (i.e., an unknown
positive constant that multiplies the control components in
the system) that is known to lie on some interval (gmin,gmax)
with known positive endpoints gmin and gmax, the functions
Ai(Y ) of the state Y = (ρ1,ζ ,ρ2,θ) are

A1(Y ) = − 1
cos(θ)

[(
κn

1−κnρ1−κgρ2
−h′1(ρ1)

)
cos(ζ )

+µ sin(ζ )] , and

A2(Y ) = −µ cos(ζ )sin(θ)

+
(

κn
1−κnρ1−κgρ2

−h′1(ρ1)
)

sin(ζ )sin(θ)

+
(

κg
1−κnρ1−κgρ2

−h′2(ρ2)
)

cos(θ),

(6)

where Y is valued in X = (0,∞)× (−π/2,π/2)× (0,∞)×
(−π/2,π/2), and

U(ρ1,ζ ,ρ2,θ) =−h′1(ρ1)sin(ζ )cos(θ)

+h′2(ρ2)sin(θ)+
∫ V (ρ1,ζ ,ρ2,θ)

0 L0(q)dq, where
(7)

V (ρ1,ζ ,ρ2,θ) =

− ln(cos(θ))− ln(cos(ζ ))+h1(ρ1)+h2(ρ2)
(8)

3826



and

L0(q) = 3
µ

[
Γ(q)+1

](
1+ ||κn||∞ + ||κg||∞

)
+2
[

1
µ

λ (q)+Γ′(q)+1
]
,

(9)

and λ (q) = λ0(q,ρc1) + λ0(q,ρc2) + 2c̄/min{ρc1,ρc2} and
Γ(q) = Γ0(q,ρc1)+Γ0(q,ρc2)+4c̄q/min{ρc1,ρc2}, with the
choices c̄ = max{h̄1, h̄2} and

λ0(q,ρci) =
2

c̄2ρ4
ci
(q+2c̄ρci)

3 +1+0.5(µ)2 +µ

and Γ0(q,ρci) =
18c̄
ρci

q+
(

2
ρci

)4 9q4

c̄2 .
(10)

Here and in what follows, || · ||∞ (resp., || · ||I ) denotes the
sup norm (resp., sup over any set I ).

When the parameter estimate Ĝ for the unknown param-
eter G is equal to G, our system (5) can be written as [14]

ρ̇1 = −sin(ζ )cos(θ)
ζ̇ = δ1− 1

cos2(θ)

[
ακn sin2(θ)

+ακg sin(θ)sin(ζ )cos(θ)
−h′1(ρ1)cos(ζ )cos(θ)+µ sin(ζ )cos(θ)]

ρ̇2 = sin(θ)

θ̇ = ακg
sin2(ζ )
cos(ζ ) −h′2(ρ2)cos(θ)

+
(
−h′1(ρ1)+

ακn
cos(θ)cos(ζ )

)
sin(ζ )sin(θ)

−µ cos(ζ )sin(θ)+δ2

(11)

on the state space X = (0,∞)× (−π/2,π/2)× (0,∞)×
(−π/2,π/2), which we call the nonadaptive dynamics, and
in the special case where the perturbations δi are identically
zero in (11), we call (11) the unperturbed nonadaptive dy-
namics. The motivation for (7) is that U is a strict Lyapunov
function for the unperturbed nonadaptive dynamics on X
with respect to its equilibrium E = (ρc1,0,ρc2,0); see [14,
Theorem 2]. The barrier term (gmax− Ĝ)(Ĝ− gmin) in (5)
ensures that the parameter estimate Ĝ stays in the interval
(gmin,gmax) that contains G. We can use a variant of the proof
of [14, Theorem 5] (with a scaling of the hi’s by different
constants h̄i, and with the δi’s set equal to 0) to show this
curve tracking and parameter identification result:

Theorem 1: When the δi’s are zero, the dynamics (5)
are uniformly globally asymptotically stable to the equi-
librium (ρc1,0,ρc2,0,G) on its state space Xa = (0,∞)×
(−π/2,π/2)× (0,∞)× (−π/2,π/2)× (gmin,gmax). �

B. Robust Forward Invariance

The preceding subsection leaves open the problem of
finding largest possible perturbation sets D ⊆ R2 such that
all solutions of the Y subsystem in (5), for all measurable
essentially bounded choices of δ = (δ1,δ2) : [0,∞) → D ,
that start in suitable subsets H of X remain in H at all
future times. In [14], we solved the preceding robust forward
invariant problem by choosing the sets H ⊆X to be paired
hexagons and the allowable perturbation sets to be compact
subsets of maximal boxes D . The D’s were maximal in
the sense that for each constant perturbation d̄ that takes a
value outside D , there existed a point p∗ on the boundary of
H such that the corresponding solution of the nonadaptive

dynamics (11) starting at p∗ for the perturbation d̄ exits H
in finite time. The analysis in [14] assumes that h̄1 = h̄2, but
it carries over to the case where these constants can differ.

Given any quadruple (ρ∗1,ρ∗2,K1,K2) ∈ (0,ρc1) ×
(0,ρc2)× [ρc1,∞)× [ρc2,∞) and any constants ζ̄ ∈ (0,π/2)
and θ̄ ∈ (0,π/2), the robustly forwardly invariant sets in
[14] took the form H = H1(ρ∗1, ζ̄ ,K1)× H2(ρ∗2, θ̄ ,K2),
where H1(ρ∗1, ζ̄ ,K1) is the closed set in the (ρ1,ζ )
plane whose boundary is the hexagon that has the vertices
A = (ρ∗1,0), B = (ρ∗1+ ζ̄/µ ], ζ̄ ), C = (ρ∗1+2ζ̄/µ ]+K1, ζ̄ ),
D = (ρ∗1 + 2ζ̄/µ ] + K1,0), E = (ρ∗1 + ζ̄/µ ] + K1,−ζ̄ ),
and F = (ρ∗1,−ζ̄ ), and H2(ρ∗2, θ̄ ,K2) is the closed set
in the (ρ2,θ) plane whose boundary is the hexagon
with the vertices A′ = (ρ∗2,0), B′ = (ρ∗2, θ̄), C′ =
(ρ∗2 + θ̄/(µ ] cos(ζ̄ ))+K2, θ̄), D′ = (ρ∗2 +2θ̄/(µ ] cos(ζ̄ ))+
K2,0), E ′ = (ρ∗2 + 2θ̄/(µ ] cos(ζ̄ )) + K2,−θ̄), and
F ′ = (ρ∗2 + θ̄/(µ ] cos(ζ̄ )),−θ̄), where µ ] = µgmin/gmax,
and the corresponding perturbation sets had the form
D = [−δ∗1,δ∗1]× [−δ∗2,δ∗2] for suitable maximum constant
bounds δ∗i for i = 1 and 2. See Figure 1.

Fig. 1. Hexagon Shaped Boundaries of Sets H1(ρ∗1, ζ̄ ,K1) (Left) and
H2(ρ∗2, θ̄ ,K2) (Right) for Robustly Forwardly Invariant Set H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2)

Also, [14, Remark 2] showed that for each pair (δ∗1,δ∗2)∈
(0,∞), we can chose the Ki’s and ρ∗i’s and µ such that H is
robustly forwardly invariant for the dynamics (11) with the
perturbation set D . However, as the δ∗i’s become large, the
required ρ∗i’s converge to 0, and the required Ki’s converge to
∞, which may be a disadvantage, since small ρ∗i’s correspond
to allowing the robot to get very close to the curve, and large
Ki’s allow the robot to get very far from the curve. Our new
results that we present next help overcome this disadvantage.

III. ROBUST FORWARD INVARIANCE UNDER SCALING

The remainder of this work is new theory that has not
appeared previously and substantially differs from [14].
Since the barrier term (gmax− Ĝ)(Ĝ−gmin) in (5) keeps the
parameter estimate Ĝ in the interval (gmin,gmax) [14], and
since there are no perturbations in the parameter update law
˙̂G = (gmax− Ĝ)(Ĝ−gmin)

1
Ĝ

(
∂U
∂ζ

A1(Y )+ ∂U
∂θ

A2(Y )
)

(12)

from (5), it suffices to prove robust forward invariance for
the Y = (ρ1,ζ ,ρ2,θ) subsystem of (5) on subsets of X =
(0,∞)×(−π/2,π/2)×(0,∞)×(−π/2,π/2) for each choice
of Ĝ(t). To this end, we first rewrite this Y subsystem as

ρ̇1 = −sin(ζ )cos(θ)
ζ̇ = Q1(Y, Ĝ,µ, h̄)+δ1

ρ̇2 = sin(θ)
θ̇ = Q2(Y, Ĝ,µ, h̄)+δ2,

(13)
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where

Q1(Y, Ĝ,µ, h̄) =− cos(ζ )κn
1−κnρ1−κgρ2

1
cos(θ)

(
G
Ĝ
− cos2(θ)

)
−ακg sin(θ)sin(ζ )

cos(θ) + G
Ĝ

h′1(ρ1)cos(ζ )
cos(θ) − G

Ĝ
µ sin(ζ )
cos(θ) and

(14)

Q2(Y, Ĝ,µ, h̄) =−κg cos2(ζ )cos(θ)
1−κnρ1−κgρ2

+G
Ĝ

(
−h′1(ρ1)+

κn
1−κnρ1−κgρ2

)
sin(ζ )sin(θ)

+G
Ĝ

(
−h′2(ρ2)+

κg
1−κnρ1−κgρ2

)
cos(θ)− Gµ cos(ζ )sin(θ)

Ĝ
,

(15)

where we leave out the dependencies of the Qi’s on t
(through the time-varying curvatures κn and κg) to simplify
the notation. The preceding functions agree with the QA

i ’s in
[14], but we write them as Qi(Y, Ĝ,µ, h̄)’s to emphasize their
dependence on the constant choices of µ and h̄ = (h̄1, h̄2).

However, unlike in [14] where we computed the max-
imum allowable bounds for the perturbations to maintain
forward invariance of H = H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2),
here we do the following. First, we fix a disturbance set
D̄ = [−∆̄1, ∆̄1] × [−∆̄2, ∆̄2] that is known to contain all
δ (t) values, where the ∆̄i’s are any known nonnegative
constants. Then, we choose µ and the h̄i’s to ensure that
H = H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) is robustly forwardly
invariant for (13) with perturbations δ : [0,∞)→ D̄ , where
the constants ρ∗i ∈ (0,ρci) and Ki ∈ [ρci,∞) for i = 1,2,
ζ̄ ∈ (0,π/2), and θ̄ ∈ (0,π/2) are fixed; see Section IV for
a detailed comparison between the method in [14] and the
one we provide here, including algorithms for applying both
methods.

Enlarging µ increases the slopes of the tilted legs AB and
DE in Fig. 1 and decreases the slopes of the legs A′F′ and
C′D′, so our new hexagons have the same general shape as in
Fig. 1 but become more like boxes. Also, for each constant
µ̄ ≥ 1, we have

(ρc1,0) ∈ H1(ρ∗1, ζ̄ ,K1)

⊆
[
ρ∗1,ρ∗1 +

2ζ̄

µ̄
+K1

]
× [−ζ̄ , ζ̄ ] and

(ρc2,0) ∈ H2(ρ∗2, θ̄ ,K2)

⊆
[
ρ∗2,ρ∗2 +

2θ̄

µ̄ cos(ζ̄ )
+K2

]
× [−θ̄ , θ̄ ]

(16)

for all choices of µ] = µgmin/gmax ≥ µ̄ , so the hexagons
maintain a positive distance of min{ρ∗1,ρ∗2,π/2− ζ̄ ,π/2−
θ̄} from the boundary of X for all choices of µ] ≥ µ̄ .
On the other hand, it is impossible to prove robust forward
invariance of boxes instead of hexagons; see [14, Remark 4].

Our new robust forward invariance result will follow from
this analogue of [14, Lemma 4], which will lead to our new
robust forward invariance algorithm in Section IV:

Theorem 2: Let (ρ∗1,ρ∗2,K1,K2, ζ̄ , θ̄ , ∆̄1, ∆̄2) ∈ (0,ρc1)×
(0,ρc2)× [ρc1,∞)× [ρc2,∞)×(0,π/2)2× [0,∞)2 be any con-
stant vector. Then we can choose the constants h̄i > 0 in the
penalty functions hi in (4), and the constant µ ≥ 1 in (3),
such that the following four conditions E1-E4 are satisfied:
E1 Q1(Y, Ĝ,µ, h̄) + µ ] sin(ζ )cos(θ) > ∆̄1 for all

(ρ1,ζ ) ∈ ED and all (ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2).
Also, Q1(Y, Ĝ,µ, h̄) + µ ] sin(ζ )cos(θ) < −∆̄1 for
all (ρ1,ζ ) ∈ AB and all (ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2).

E2 Q1(Y, Ĝ,µ, h̄) > ∆̄1 for all (ρ1,ζ ) ∈ FE and all
(ρ2,θ)∈H2(ρ∗2, θ̄ ,K2). Also, Q1(Y, Ĝ,µ, h̄)<−∆̄1 for
all (ρ1,ζ ) ∈ BC and all (ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2).

E3 Q2(Y, Ĝ,µ, h̄) + µ ] cos(ζ̄ )sin(θ) > ∆̄2 for all
(ρ2,θ) ∈ A′F ′ and all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1).
Also, Q2(Y, Ĝ,µ, h̄) + µ ] cos(ζ̄ )sin(θ) < −∆̄2 for all
(ρ2,θ) ∈C′D′ and all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1).

E4 Q2(Y, Ĝ,µ, h̄) > ∆̄2 for all (ρ2,θ) ∈ F ′E ′ and all
(ρ1,ζ )∈H1(ρ∗1, ζ̄ ,K1). Also, Q2(Y, Ĝ,µ, h̄)<−∆̄2 for
all (ρ2,θ) ∈ B′C′ and all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1).

hold for all values Ĝ∈ (gmin,gmax) of the parameter estimate
for the unknown control gain G. �

Proof: The proof has the same structure as the proof
of [14, Lemma 4], except instead of reducing the ρ∗i’s and
increasing the Ki’s to make E1-E4 hold as was done in [14],
we choose µ and the h̄i’s big enough. However, the changes
needed in the proofs from [14] are significant, so we provide
a complete proof here. We assume that

µ > gmax
gmin

max
{

ζ̄

ρc1−ρ∗1
, ζ̄ , θ̄

cos(ζ̄ )
, θ̄

cos(ζ̄ )(ρc2−ρ∗2)

}
. (17)

Later we put more restrictions on µ . We first place conditions
on h̄1 ≥ 1 such that E1 holds for all µ’s that satisfy (17).

Since (17) gives µ ] = µgmin/gmax > ζ̄/(ρc1 − ρ∗1), we
have ρ1 ≤ ρ∗1 + ζ̄/µ ] < ρc1 on the leg AB. Also, ζ ≥ 0 on
AB, the h′i’s are nondecreasing, and h′′1(ρc1)> 0. Therefore, at
all points Y = (ρ1,ζ ,ρ2,θ) ∈H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)
such that (ρ1,ζ )∈ AB and for all values Ĝ∈ [gmin,gmax], we
have h′1(ρ1)≤ h′1(ρ∗1 + ζ̄/µ ])< 0, and so

Q1(Y, Ĝ,µ, h̄)+µ ] sin(ζ )cos(θ)

=− cos(ζ )κn
1−κnρ1−κgρ2

1
cos(θ)

(
G
Ĝ
− cos2(θ)

)
− ακg sin(θ)sin(ζ )

cos(θ)

+
Gh′1(ρ1)cos(ζ )

Ĝcos(θ)
−
{

sin(ζ )µ
cos(θ)

(
G
Ĝ
− cos2(θ) gmin

gmax

)}
≤ 1

cos(θ)

[
||κn||∞

(
gmax
gmin

+1
)
+ ||κg||∞

+
gmin cos(ζ̄ )h′1(ρ∗1+ζ̄/µ])

gmax

]
< −∆̄1 ,

(18)

when h̄1 ≥ 1 is large enough, using the nonnegativity of the
term in curly braces in (18) along AB, the nonpositivity of
the curvatures (which implies that |α| = |ϕ|/(1− κnρ1 −
κgρ2) ≤ 1) and the fact that 0 < cos(ζ̄ ) ≤ cos(ζ ) ≤ 1 on
H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2), to use h′1(ρ∗1+ ζ̄/µ ])< 0 to
cancel the effects of the other terms in (18). The proof that

Q1(Y, Ĝ,µ, h̄)+µ
] sin(ζ )cos(θ)> ∆̄1 (19)

at all points (ρ1,ζ ) ∈ DE for large enough h̄1 ≥ 1 is analo-
gous, because for all such points, we can use our assumption
that K1 ≥ ρc1 to get h′1(ρ1)≥ h′1(ρ∗1 + ζ̄/µ ]+K1)> 0, and
the fact that ζ ≤ 0 on the leg DE and nonpositivity of the
term in curly braces in (18). This provides our conditions on
h̄1 to satisfy E1, which hold for all µ’s that satisfy (17).

Next, we specify h̄2’s such that E3 holds for all µ ≥ 1 that
satisfy (17). Along A′F ′, condition (17) and our choice of
the vertex F′ give ρ2 ≤ ρ∗2 + θ̄/[µ ] cos(ζ̄ )]< ρc2, so

h′2(ρ2)≤ h′2(ρ∗2 + θ̄/[µ ] cos(ζ̄ )])< 0 (20)
(because our formulas (4) for the hi’s imply that h′2 is
nondecreasing, h′2(ρc2) = 0, and h′′2(ρc2)> 0). Also, −π/2 <
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θ ≤ 0 and so sin(θ)≤ 0 for all pairs (ρ2,θ) on A′F ′. Hence,

Q2(Y, Ĝ,µ, h̄)+µ ] cos(ζ̄ )sin(θ)

=−κg cos2(ζ )cos(θ)
1−κnρ1−κgρ2

+ G
Ĝ
(−h′1(ρ1)

+ κn
1−κnρ1−κgρ2

)
sin(ζ )sin(θ)

+G
Ĝ

(
−h′2(ρ2)+

κg
1−κnρ1−κgρ2

)
cos(θ)

+
{

µ sin(θ)
(
−G

Ĝ
cos(ζ )+ gmin

gmax
cos(ζ̄ )

)}
≥−||κg||∞ + gmin

gmax

∣∣∣h′2(ρ∗2 +
θ̄

µ] cos(ζ̄ )

)∣∣∣cos(θ̄)

− gmax
gmin

(
sin(θ̄)||h′1||[ρ∗1,ρ∗1+K1+2]

+sin(θ̄)||κn||∞ + ||κg||∞
)
> ∆̄2

(21)

at all points Y ∈ H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) such that
(ρ2,θ) is on the leg A′F ′, when h̄2 ≥ 1 is large enough
(where the lower bound on allowable h̄2’s depends on the
choice of h̄1, but not on the choice of µ that satisfies (17)),
since the term in curly braces in (21) is nonnegative at
such points. To get the inequality in (21), we also used
the fact that µ ] > ζ̄ , which follows from (17) and implies
that ρ∗1 ≤ ρ1 ≤ ρ∗1 +K1 +2 for all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1).
Analogous reasoning gives the other assertion in E3, because
the term in curly braces in (21) is nonpositive on C′D′.
Finally, enlarging µ ≥ 1 gives conditions E2 and E4.

The proof that Theorem 2 leads to our desired robust
forward invariance result for the paired hexagons can now be
done using the following analog of the proof of [14, Theorem
3] that we gave in [14]. We introduce the constants

∆
∗
a = minĜ{|Q1(Y, Ĝ,µ, h̄)+µ ] sin(ζ )cos(θ)| :

(ρ1,ζ ) ∈ AB∪ED,(ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2)},
∆∗b = minĜ{|Q1(Y, Ĝ,µ, h̄)| : (ρ1,ζ ) ∈ FE ∪BC,

(ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2)},
∆∗c = minĜ{|Q2(Y, Ĝ,µ, h̄)+µ ] cos(ζ̄ )sin(θ)| :
(ρ2,θ) ∈C′D′∪A′F ′,(ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1)}, and
∆∗d = minĜ{|Q2(Y, Ĝ,µ, h̄)| : (ρ2,θ) ∈ B′C′∪F ′E ′,
(ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1)},

(22)

where the subscript Ĝ means that the minimization is also
over all constants Ĝ ∈ [gmin,gmax]. Then min{∆∗a,∆∗b} ≥ ∆̄1
and min{∆∗c ,∆∗d} ≥ ∆̄2, where ∆̄i is the known bound on
|δi(t)| for i = 1,2 as before, and our results apply for any
choices ∆̄i ≥ 0. Set ∆̄ζ = min{∆∗a,∆∗b} and ∆̄θ = min{∆∗c ,∆∗d}.
The following implies that our adaptive tracking and param-
eter identification dynamics (5) has the robustly forwardly
invariant set H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)×(gmin,gmax) for
suitable perturbation sets D :

Corollary 1: Let (ζ̄ , θ̄) ∈ (0,π/2)2, (∆̄1, ∆̄2) ∈ [0,∞)2,
and (ρ∗1,ρ∗2,K1,K2)∈ (0,ρc1)×(0,ρc2)× [ρc1,∞)× [ρc2,∞)
be given constants, and choose any constant vector (µ, h̄1, h̄2)
such that conditions E1-E4 from Lemma 2 hold. Then:
(a) For each C1 solution Ĝ : [0,∞) → (gmin,gmax) of the
update law (12) and all constants δ∗1 ∈ (0, ∆̄ζ ) and δ∗2 ∈
(0, ∆̄θ ), the set H = H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) is ro-
bustly forwardly invariant for (13) with the disturbance
set D = [−δ∗1,δ∗1] × [−δ∗2,δ∗2]. (b) For each constant

δ+ > ∆̄ζ (resp., > ∆̄θ ), there exist a boundary point Y ∈
∂ (H1(ρ∗1, ζ̄ ,K1)× H2(ρ∗2, θ̄ ,K2)) and a solution of (12)
such that the trajectory for (13) starting at Y for one of
the constant perturbations ±(δ+,0) (resp., ±(0,δ+)) exits
H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) in finite time. �

Proof: The proof of Corollary 1 has the same structure
as the proof of [14, Theorem 3], with the important difference
that instead of using conditions (C1)-(C4) from [14, Lemma
4], we use the corresponding conditions E1 and E3 (resp.,
E2 and E4) to prevent trajectories from exiting through the
tilted (resp., top and bottom) legs of the paired hexagons.

By combining Theorem 1 and Corollary 1, we can prove
that for all constants ∆̄i ≥ 0 for i = 1,2 and each choice
of D that satisfies the requirements from Corollary 1,
the system (5) is input-to-state stable with respect to its
equilibrium (ρc1,0,ρc2,0,G) on each set H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2)× (gmin,gmax) with perturbations δ = (δ1,δ2)
that are valued in D . This follows from the boundedness of
the gradient of U on any of the compact paired hexagons,
and [14, Lemma 2]. This implies curve tracking and iden-
tification of the control gain G, in the special case where
the perturbations δi are 0. We next compare the preceding
algorithm with the algorithm from [14] in detail.

IV. COMPARING ALGORITHMS

Section III provides a very different way to find tolerance
and safety bounds from the method in [14, Remark 2]. To
see why, we first express the method from [14, Remark 2]
as follows, where the legs refer to those of H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2) from Fig. 1 above, as before:

Algorithm 1: Given any positive constants ∆̄i such that
the unknown perturbation δi in (5) is known to take all of
its values in [−∆̄i, ∆̄i] for i = 1 and 2, any pairs (ρc1,ρc2) ∈
(0,∞)2 and (ζ̄ , θ̄) ∈ (0,π/2)2, and any common value c =
h̄1 = h̄2 > 0 for the constants in the formula (4) for the
penalty functions hi, choose the constants µ > 0 and ρ∗i ∈
(0,ρci) and Ki > 0 for i = 1 and 2 using the following steps:

S1 Choose µ > 0 and constants ρ̄∗i ∈ (0,ρci) for i = 1,2
such that (17) holds for all ρ∗i ∈ (0, ρ̄∗i) for i = 1,2.

S2 Choose ρ∗1 ∈ (0, ρ̄∗1) small enough and K1 ≥ ρc1 large
enough such that for all µ satisfying S1, we have:
G1 Q1(Y, Ĝ,µ, h̄)+µ ] sin(ζ )cos(θ)<−∆̄1 (resp., >
AAA∆̄1) at all points on the leg AB (resp., DE).

S3 Choose ρ∗2 ∈ (0, ρ̄∗2) small enough and K2 ≥ ρc2 large
enough such that for all µ satisfying S1, we have:
G2 Q2(Y, Ĝ,µ, h̄) + µ ] cos(ζ̄ )sin(θ) > ∆̄2 (resp., <
AAA−∆̄2) at all points on the leg A′F′ (resp., C′D′).

S4 Enlarge µ > 0 as needed to satisfy E2 and E4.
Then H1(ρ∗1, ζ̄ ,K1) × H2(ρ∗2, θ̄ ,K2) × (gmin,gmax) is ro-
bustly forwardly invariant for the augmented system (5) for
all disturbances δ valued in D = [−∆̄1, ∆̄1]× [−∆̄2, ∆̄2]. �

While not explicitly stated in [14], Algorithm 1 follows
from the proof of [14, Lemma 4] and uses the properties
limρi→0+ hi(ρi) = limρi→∞ hi(ρi) = ∞ for i = 1,2 to pick the
ρ∗i’s small enough and the Ki’s big enough. The choices of
ρ∗2 and K2 in Step S3 depend on the choices of ρ∗1 and K1
from Step S2. If we use Algorithm 1, then larger perturbation
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bounds ∆̄i require choosing smaller positive constants ρ∗i
and larger Ki’s, so the hexagons get close to the vertical
axes in Fig. 1, and also become wider (which corresponds to
allowing the robot to move far from the curve being tracked).

By contrast, our new algorithm from Section III is as
follows, where conditions G1-G2 are from Algorithm 1:

Algorithm 2: Given any positive constants ∆̄i such that
the unknown perturbation δi in (5) is known to take all of
its values in [−∆̄i, ∆̄i] for i = 1 and 2, any pairs (ρc1,ρc2) ∈
(0,∞)2 and (ζ̄ , θ̄)∈ (0,π/2)2, and any constants ρ∗i ∈ (0,ρci)
and Ki ≥ ρci for i = 1 and 2, choose the constant µ > 0 and
the scaling constants h̄i’s in (4) as follows:
M1 Choose any constant µ > 0 such that (17) holds.
M2 Choose h̄1 such that G1 holds for all µ satisfying (17).
M3 Choose h̄2 such that G2 holds for all µ satisfying (17).
M4 Enlarge µ > 0 as needed to satisfy E2 and E4.

Then H1(ρ∗1, ζ̄ ,K1) × H2(ρ∗2, θ̄ ,K2) × (gmin,gmax) is ro-
bustly forwardly invariant for the augmented system (5) for
all disturbances δ valued in D = [−∆̄1, ∆̄1]× [−∆̄2, ∆̄2]. �

Since Q2(Y, Ĝ,µ, h̄)+µ ] cos(ζ̄ )sin(θ) depends on h1, the
h̄2 in Step M3 will depend on h̄1. Algorithm 2 scales the
hi’s by increasing the h̄i’s, instead of using the approach
from Algorithm 1 of manipulating the arguments of the hi’s.
Algorithm 2 eliminates the need to allow the paired hexagons
to get too wide or close to the vertical axes in Fig. 1, which
is helpful in applications that require separation between the
robot and the curve being tracked; see (16). By proving ISS
under arbitrarily large ∆̄i’s, under scalings of µ and of the
h̄i’s, while maintaining positive distances between the paired
hexagons and the edges of the state space, our work also
improves on the ISS results from [14], which did not use our
scaling approach and did not compensate for arbitrarily large
disturbances unless the distances from the paired hexagons
to the edges of the state space decreased towards zero.

V. CONCLUSIONS

We advanced the theory of state constrained 3D curve
tracking by exploiting connections between tuning constants
and allowable perturbation bounds that ensure robust forward
invariance. Our new results include perturbations, polygonal
state constraints, and identification of unknown control gains
using adaptive control. Our scaling approach tunes scaling
constants in the controls to compensate for arbitrarily large
disturbance bounds while maintaining desirable separation
between the polygons and the edges of the state space, and
so builds on [14, Remark 2] from our recent SIAM Journal on
Control and Optimization paper. We hope to extend our work
to identify the curvatures κn and κg when the curvatures are
unknown, which is challenging because the curvatures enter
(5) in a nonlinear way. This would generalize our scaling
method from [10] for identifying unknown curvatures in the
2D case, which used one scaling parameter instead of the
three scaling constants µ , h̄1, and h̄2 that we needed here.
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