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Abstract— We present an approach that allows the Georgia
Tech Miniature Autonomous Blimp (GT-MAB) to detect and
follow a human. This accomplishment is the first Human Robot
Interaction (HRI) demonstration between an uninstrumented
human and a robotic blimp. GT-MAB is an ideal platform for
HRI missions because it is safe to humans and can support suffi-
cient flight time for HRI experiments. However, due to complex
aerodynamic influence on the blimp, the human following task
for GT-MAB with a single on-board camera is a challenging
problem. We integrate Haar face detector and KLT feature
tracker to achieve robust human tracking. After a human face
is detected in the real-time video stream, we estimated the
3D positions of the human with respect to GT-MAB. Vision-
based PID controllers are designed based on estimated relative
position and the motion primitives of GT-MAB such that it
can achieve stable and continuous human following behavior.
Experimental results are presented to demonstrate the human
following capability on GT-MAB.

MULTIMEDIA MATERIAL
A video attachment to this work is available at: https:

//www.youtube.com/watch?v=cp1201phPts.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) can be used for many

applications. Detection of dynamic objects using flying
robots can have a profound impact on applications such as
traffic supervision, autonomous robot navigation and surveil-
lance of large facilities. These environments require UAVs
to cooperate with humans. However, typical UAVs such as
quad-rotor helicopters and aircrafts can be dangerous when
interacting with humans due to their sharp and powerful
propellers. In addition, their flight time is relatively short. A
safer robot that can fly for longer time would be beneficial.

We developed the Georgia Tech Miniature Autonomous
Blimp (GT-MAB) as an alternative UAV for indoor experi-
ments that can support research on 3D motion control and
human-robot interaction [1]. GT-MAB does not hurt human
even when it accidentally collides with humans because it
is very light. As illustrated in figure 1, a human can stand
very close to GT-MAB and will not be scared. In addition
to being safe, GT-MAB has a relatively long flight time of
over 2 hours per battery charge. In this paper, we achieve
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Fig. 1. An uninstrumented person interacts closely with GT-MAB

the human following behavior on GT-MAB. To the best of
our knowledge, this is the first HRI demonstration between
an uninstrumented human and an autonomous robotic blimp
using only passive computer vision. This accomplishment
is an important step towards safer human robot interaction
capabilities such as dancing with humans, serving as a
flying telepresence robot, leading people to a destination and
assisting workers in industry. The unique physical design of
GT-MAB enables the use of one on-board monocular camera
as the only sensor to achieve human detection and human
position estimation.

Plenty of work exists for UAVs and human interaction.
Interfaces, such as touch screen [2], audio/speech [3] and
computer vision [4], [5], are applied to achieve HRI missions
for flying vehicles. Vision-based human feature detection,
such as face detection and gesture detection, are natural
communication cues for robots to interact with uninstru-
mented humans who do not wear additional tracking devices
[6]. People install cameras on the UAVs and use image
processing techniques to enable the vehicles to sense the
environment and recognize the commands from humans. A
human controlling a team of quad-rotors through face and
gesture recognition is presented in [7]. The quad-rotors are
able to take pre-defined actions, such as joining the team,
leaving the team or landing, based on human’s gestures.
In [8], Naseer et. al presented an approach to achieve the
behavior of a single UAV following a single human using an
on-board camera. However, a depth camera is required for
this approach instead of a traditional RGB camera. Human
following behavior based on monocular vision is presented
in [9], requiring that the initial height of the UAV is known.
A commercial product named “hover camera” can achieve
static hovering and human following functionalities to take
pictures and videos of a human, but it requires an extra
down-looking camera and a sonar to stabilize the UAV [10].
Besides, it can only support 8 minutes of flight time.

Such vision-based human or target following missions are
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challenging for quad-rotor helicopters or fixed-wing UAVs
because of the flying postures and vibration of the platform.
Normally, gimbal systems are used to adjust the position of
on-board camera and rubber balls are used to absorb the
vibration [11].

In contrast to other UAVs, robotic blimps are self-
stabilized and have less vibration when flying, which are
better platforms to use an on-board camera as the vision
sensor. Besides, from the human users’ point of view, blimps
are better for HRI missions, taking social factors such as
noise and appearance issues into consideration [12]. In [13],
authors developed a spherical robotic blimp. Computer vision
algorithms are developed to monitor activities in an area
patrolled by the blimp. However, the spherical blimp is not
able to distinguish a human from other objects and therefore,
does not solely react to human motion.

In this work, we explore the possibility of detecting and
following a human user with robotic blimp GT-MAB. We
propose a design that follows a data pipeline: Detecting-
Estimating-Following. We first implement the robust face
detection and KLT feature point tracking algorithms to track
the human face in the live video stream using the blimp
camera. Then based on the face position in the 2D image
frame, the relative 3D position (i.e., the relative orientation
and distance between the blimp and human target) of the
human can be estimated. The estimation method does not
require calibration of the camera. The flight control for the
blimp to follow the human is difficult due to the complex
nonlinear dynamics of the blimp and the external aerodynam-
ical influence. In our work, we utilize the motion primitives
of GT-MAB and design PID controllers to achieve stable and
continuous human following behavior on GT-MAB. We also
design a side-way motion controller to regulate the blimp
flight to maintain the human in sight of the camera.

This paper is organized as follows. In Section II, we
introduce the hardware and system setup for the blimp and
human interaction. In Section III, we present the method
of localizing a human using human face detection and the
control of the blimp. In Section IV, we show experimental
results of the human following behavior implemented on GT-
MAB. Section V is the conclusion.

II. GT-MAB PLATFORM AND HARDWARES

GT-MAB consists of an envelope and a customized gon-
dola. The envelope has a unique saucer-like shape, which
solves the conflict between maneuverability and stability
while maximizing the buoyancy with limited footprint. In
addition, the Helium-filled envelope provides a lift force
for the entire vehicle, which significantly extends the flight
duration of the blimp since no energy is required to keep
it aloft. The gondola is a 3D-printed mechanical structure
accommodating all on-board devices underneath the enve-
lope. Figure 2 demonstrates the structure of the gondola and
indicates the main components installed on it. We use five
motors for this experiment. The vertically mounted motors
are used to change the altitude while the horizontal ones
enable the blimp to fly horizontally and change the heading

Fig. 2. The blimp gondola with various components located

Fig. 3. System Overview

angle. One side-way motion motor is used to keep blimp in
the front of human. The blimp has only 15 grams total load
capacity, including the camera, microprocessors and wireless
communication devices.

One difficulty for vision-based HRI mission on the robotic
blimp is finding a camera that is light enough to be supported
by the blimp. There is a trade-off between video quality and
the weight of the camera. The camera we install on GT-MAB
is a 5.8 GHz analog camera. This compact device weighs
4.5 grams and has diagonal field of view of 115 degrees.
The camera is directly attached to the gondola. This camera
is the best option we could find which can support wireless
transmission. However, since the camera is analog, the video
produced from it includes some glitch noise, which makes
image processing more difficult than digital cameras.

Figure 3 shows the block diagram of the hardware setup
for the system. Video stream coming from the on-board
camera is obtained by the receiver and then digitized by
the video capture card installed on the ground station PC.
Outputs of the control algorithms running on the ground
station PC are packed into commands with a certain format.
Then the control command package is sent to the blimp via
an Xbee wirelsss module.

III. METHODOLOGY

The implementation of human following behavior on GT-
MAB involves three steps: 1) detecting a human face in real-
time video stream, 2) estimating the relative position between
the blimp and human, and 3) using vision-based estimation
to control the movement of blimp to follow the human.

A. Human Detection and Tracking

Our work is based on human face detection because
the face is the most distinctive feature separating a human
from other objects. Many research works exist to improve
the performance of human face detection algorithm [14],
[15]. Viola and Jones were able to implement a robust
face detection algorithm using Haar features and cascade
classifier [16]. A Haar feature considers patterned adjacent
rectangular regions at a specific location in a face image,



Fig. 4. A frame of the video stream from GT-MAB that was processed
with face tracking algorithm

sums up the pixel intensities in each region and calculates
the difference between these sums. The values computed
based on Haar features are used to train a large number of
weak classifiers whose detection qualities are slightly better
than random guessing. Then weak classifiers are organized
in classifier cascades using AdaBoost method [17] to form
strong classifiers, which can robustly determine whether an
image contains a human face.

We use two image sets for training Haar features, one is
for front face and the other is for side face, so that the blimp
can recognize a human from different angles. Due to the
poor quality and noises from the blimp camera, the robust
real-time face detection algorithm in [16] cannot guarantee
continuous and reliable face detection in our case. To obtain
stable detection of a human, rather than running human
face detection every frame, our method uses the Kanade-
Lucas-Tomasi (KLT) algorithm [18] to track the face after
the human face is detected, which is computationally more
efficient and robust than detecting the face each frame.

Algorithm 1 presents the pseudocode for the human face
detection and tracking algorithm. The algorithm has two
modes: face detection and KLT tracking. 1) The algorithm
detects the human face using Haar features for the first
several frames to prevent misdetection. Once a human face is
detected, it extracts the feature points within the face region
for the tracking mode. 2) In the face tracking mode, the
algorithm matches the corner feature points of the new frame
with the corner feature points from the previous frame, and
it estimates the geometric displacement between these two
sets of corner points. The displacement vector is applied to
the previous face bounding box to obtain the new bounding
box, so the algorithm can continuously track the human face.
Once the number of corner points is below a certain threshold
b, the mode switches back to face detection. A frame of
the blimp video processed with algorithm 1 is shown in
figure 4. The yellow rectangle is the bounding box that the
algorithm recognizes as the area of the human face and the
white crosses are the corner feature points.

Based on the bounding box of the human face, we can
obtain the coordinates of the center of human face in image
frame, denoted as [iP , jP ]

T ∈ R2 and the face length lf ,
where iP , jP and lf are in units of pixels. And we use the
variable Sf to record which side of the human is detected.

B. Relative Position Estimation

Our method localizes the blimp using vision from a camera
only. This is different from most other blimps which utilize

Algorithm 1: Face Detection and Tracking
Data: Video Stream
Result: Face center [iP , jP ]T , face length lf and side

of the face Sf

1 FrameNum = 1, FeatureNum = 0;
2 while Video is not ended do
3 if FrameNum ≤ a or FeatureNum ≤ b then

/*Detection Mode*/
4 Run frontal and side face detection and

determine the bounding box of face;
5 Save which side of face is detected in Sf ;
6 Detect corner points and re-initialize the KLT

point tracker within the bounding box;
7 Calculate the number of corner points

FeatureNum;

8 else
/*Tracking Mode*/

9 Estimate the geometric displacement between
the corner points in previous frame and the
corner points in the current frame;

10 Apply the displacement vector to the bounding
box in previous frame to obtain new bounding
box;

11 Run side face detection within the 1
4 frame

around the bounding box, set value for Sf if a
side face is detected;

12 Update FeatureNum with the number of
corner points within the new bounding box;

13 Set the face center [iP , jP ]T to be the center of
bounding box and face length lf to be the length of
the bounding box;

14 FrameNum = FrameNum+ 1;

external localization system, suchs as GPS or indoor 3D
localization.

We assume that the camera satisfies the pinhole camera
model [19], which defines the relationship between a 3D
point [x, y, z] ∈ R3 in the camera coordinate XC−YC−ZC

and a 2D pixel [i, j]T in the image frame.ij
1

 =

fi 0 i0 0
0 fj j0 0
1 0 1 0



x
y
z
1

 (1)

where fi and fj are the focal length in i and j directions, and
[i0, j0]

T is the optical center of the camera. Here we assume
that fx and fy are both equal to the same focal length f and
[i0, j0]

T is the center of the image.
Reversely, if we know the focal length f of the camera and

the actual depth z of the face center, we can reconstruct the
3D point [x, y, z]T . However, since the wireless camera on
GT-MAB is a monocular camera, we cannot directly obtain
the accurate depth information of the human. In order to
reconstruct the 3D point, we proposed a method to estimate
the depth of the human face.



Fig. 5. Illustration of relative distance estimation

The illustration of human position estimation is shown in
figure 5. Because the pitch and roll angles of blimp are very
small, we can assume that the camera projection plane is
always perpendicular to the ground, i.e. YC is perpendicular
to the ground. This assumption does not hold for quad-rotors
because quad-rotors need to change the pitch angle to fly
forward or backward. Extra information is needed to estimate
the height of quad-rotors [9], [20]. Blimp provides certain
convenience to support vision-based HRI algorithms because
the pitch and roll angles of the on-board camera can be
controlled to stay at zero. Line AB represents the centerline
of the human face and we assume it is parallel to the image
plane, i.e. plane of human face is also perpendicular to the
ground. Point P = [xP , yP , zP ]

T is the center point of
line AB. Points A′, B′ and P ′ are corresponding projection
points. We denote the actual length of the human face as
L0 := |AB| and denote the length of the human face in
camera projection plane as lf := |A′B′|.

First, we measure the human face length L0 in units of
meters. The human stands away from the camera at a fixed
distance d0 and the position of blimp is adjusted such that
the center of the human face is at the center of image frame.
Then we record how many pixels the human face has in the
image, denoted as l0f . Given l0f , d0 and L0 as known prior
knowledge, the focal length f can be expressed as:

f = d0
l0f
L0

(2)

Once we get the measurement lf from a frame, it should
satisfy the following equation.

lf
L0

=
|A′B′|
|AB|

=
|OCP

′|
|OCP |

=
|OCO

′|
|OCO|

=
f

zP
(3)

Note that this equation holds only if line AB is parallel to
the projection plane.

Substitute f using equation (2), we can estimate the center
of the human face [x̂P , ŷP , ẑP ]

T in the camera coordinate
frame based on the coordinate [iP , jP ]

T of P ′:

ẑP =d0
l0f
L0

L0

lf
=d0

l0f
lf

x̂P =
ẑP (iP − i0)

f
=

(iP − i0)
l0f · d0/L0

· d0
l0f
lf

=
L0(iP − i0)

lf

ŷP =
ẑP (jP − j0)

f
=

(jP − j0)
l0f · d0/L0

· d0
l0f
lf

=
L0(jP − j0)

lf
(4)

The necessary measurements, i.e. distance d̂, height ĥ and
yaw angle ψ̂, can be calculated based on [x̂P , ŷP , ẑP ]

T ,

d̂ =
√
x̂2P + ẑ2P , ĥ = h0 − ŷP , and ψ̂ = arcsin(

x̂P

d̂
) (5)

where h0 is the human’s height.
According to (4) and (5), the prior knowledge we need for

computing distance, height and yaw angle are l0f , d0 and L0,
which can be easily measured. Therefore, in our work, we
do not need to calibrate the camera. The assumptions about
the camera are that the focal lengths in Xc and Yc directions
are equal and the optical center of the camera is the center
of the image.

Note that the estimated measurements from vision can
be relatively inaccurate compared to the measurements from
a 3D localization system. The inaccuracy first comes from
the poor quality of the video stream. Since the camera is
an analog camera, the video stream includes noise. The
inaccuracy also comes from the face tracking algorithm.
The face region determined by the KLT tracking may not
be exactly covering the human face, so the face center
position [iP , jP ]

T and face length lf contain some errors.
These issues can be compensated by well designed feedback
controllers for the blimp flight.

C. Human Following Control

Blimps have dynamics that are different from quad-rotors
and small airplanes. The general model of blimp has six
degrees of freedom and is highly nonlinear and coupled.
Based on the self-stabilized physical design of the GT-MAB,
the roll angular velocity and the pitch angular velocity are
negligible during the blimp flight. The blimp dynamics can
be described by three simplified motion primitives:
1. Distance. The blimp can change distance along the hori-

zontal direction that is aligned with its propellers.

md̈ = Fz + fz (6)

where d is the relative distance between blimp and human,
fz is the force generated by the two horizontal propellers
and Fz is the external forces in ZC direction.

2. Height. The blimp can ascend or descend to a desired
height.

mḧ = Fy + fy (7)

where h is the height of blimp with respect to the ground,
fy is the force generated by the two vertical propellers
and Fy is the external forces in YC direction.

3. Yaw angle. The blimp is able to spin in place so that its
yaw angle can be stabilized at any desired value.

Iψ̈ =M + τ. (8)

where ψ is the yaw angle, τ is the torque generated by
propellers and M is the external moments exerted on
blimp.
The external terms Fz , Fy and M are disturbances for the

blimp and cannot be ignored. To compensate these distur-
bances, we introduce three feedback controllers to achieve



Fig. 6. An illustration of side-way motion motor on-off control from
the top view. The grey circle represents the blimp and the yellow circle
represents the human. The blue area is the human’s front face and the red
areas represent human’s side faces. The green arrow represents the force
generated by the side-way motion motor.

stable blimp flight based on the estimation computed by
(5). The distance controller uses the estimated distance d̂
as feedback measurement and fz as control command. The
height controller uses the estimated height ĥ as feedback
measurement and fy as control command. The heading
controller uses the estimated yaw angle ψ̂ as feedback and
τ as the control command. The goal is to control the blimp
so that it keeps a constant distance d0 away from the human
at all times, in conjunction with the human moving, while
keeping the human face at the center of the image, i.e.
d̂ = d0, ĥ = h0 and ψ̂ = 0.

Because the measurements from a single camera are not
accurate, the controllers need to be robust to the errors
between estimated position and true position. Besides, since
the blimp is required to keep the human face in sight of the
camera for the entire time, the controllers need to be carefully
designed such that blimp can fly fast enough to follow the
motion of the human. That is to say, the settling time of each
controller should be relatively short. Meanwhile, the blimp
cannot move too fast as it may scare people. In other words,
large overshoot of the controller should be avoided.

The controllers are designed as three PID controllers. The
PID parameters are carefully tuned in MATLAB based on
the system identification of GT-MAB such that all the control
performance requirements mentioned above can be satisfied.
The PID parameters are shown in the Table I.

TABLE I
PID CONTROLLER GAINS

Controllers P I D
Distance 0.0125 0 0.0658
Height 1.3120 0.0174 1.4704
Yaw 0.3910 0 0.3840

To keep the human face in view of the blimp camera,
we also use an on-off controller for the side-way motion to
ensure that GT-MAB is always facing the front of human.
As illustrated by figure 6, once the side face is detected, the
side-way motion motor will be activated and generate a small
force (green arrow) along the XC direction. The force can
regulate the blimp to fly back to the blue area, facing the
front of the human. Once the blimp detects the front face of
the human, the side-way motion motor will be turned off.

IV. RESULTS

We test the human following behavior with the human as
the leader and the blimp as the follower through experiment.

As the human moves up, down, right, left, forward and
backward, the blimp is able to follow the human to a certain
extent given that human is not moving too fast. In the
experiment, we set the desired relative distance d0 between
the human and the blimp equal to 1.5 meters. To test the
performance of our human following algorithm, we use an
external real-time tracking system, OptiTrack, to measure
accurate 3D position of the human and the blimp. Note that
OptiTrack data is only used for analyzing the performance
of our method. The data used for the human detection and
the blimp control is only from the on-board camera.

Figure 7 shows the snap shots from the blimp camera. GT-
MAB can successfully track a human face and determine if
it is facing the side of human face while it is flying. Figure
7(a) shows that a human face is detected by Algorithm 1.
The estimated distance between the human and the blimp is
also shown in the figure. Figure 7(b) shows the same face
can be tracked. Figure 7(c) and 7(d) show that our algorithm
can distinguish the human’s left and right face.

Figure 8 shows a 3-dimensional view of the blimp and
human trajectories. The blue solid line represents the trajec-
tory of the human with the circle as the starting point and
the star as the ending point. The red dashed line represents
the trajectory of the blimp. The coordinate in this figure is
the OptiTrack coordinate in units of meters. Figure 9 shows
a top view of the blimp and human trajectories. From these
two figures, we can see that the trajectories of the human
and GT-MAB are similar.

Figure 10 shows the height of the blimp and human in the
Z axis of OptiTrack system. The human kneels down three
time to test the height control and the blimp can change
its height corresponding to the human height. It appears
as though the blimp is too high compared to the human.
However, the OptiTrack sensors on the human are by the
human’s chest while the sensors on the blimp were on top
of the envelope. This accounts for the difference in Z for the
human and blimp. Although there is a difference in the Z
position over time for the blimp and the human, the trend is
the same for both, suggesting our method is accurate to some
degree. Vision data from the camera is the sole measurement
for carrying out our procedure. Due to this fact, our “human-
following blimp” is not limited to use in a lab envirnoment
but can in fact be used in other indoor environments. This
is a benefit to using vision for all measurements rather than
using 3D localization system such as OptiTrack.

V. CONCLUSION

Using autonomous robotic blimps as flying companions
has a large potential for human-robot interaction. Human
following capability is an essential prerequisite of HRI ap-
plications. This paper demonstrates the first example that our
robotic blimp GT-MAB, equipped with only one monocular
camera, can achieve the human following capability. This
is enabled by robust human face detection and vision-based
feedback control. The human following behavior is tested
successfully on GT-MAB through experiments.



(a) Face detection mode (b) Face tracking mode (c) Left face detection (d) Right face detection

Fig. 7. Frames of the real-time video from GT-MAB

Fig. 8. 3-dimensional view of the blimp and human trajectories. The
starting positions are represented by the cirles and the ending positions are
represented by the stars.
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