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Abstract— Priority-based scheduling strategies are often used
to resolve contentions in resource constrained networked con-
trol systems (NCSs). Such scheduling strategies inevitably
introduce time delays into controls. Considering the coupling
between priority assignment and control, this paper proposes a
novel method to co-design priority assignments and controls for
each control loop in NCSs. The co-design aims to minimize the
performance degradation caused by time delays. The priority
assignment is determined by a path planning approach to
search for optimal priority assignments. Model predictive con-
trollers are designed based on optimizing priority assignments
to compute optimal controls. Simulations are presented to show
the effectiveness of the proposed method.

I. INTRODUCTION

Control systems in modern industry often use shared com-
munication networks to increase modularity and flexibility
[1]. Sensors, controllers, and actuators connected to the
network are regarded as nodes of networked control systems
(NCSs). The bandwidth for communication between nodes is
limited, disallowing sensor messages to transmit immediately
after generation, and this causes time delays in the NCSs [2].

Two types of systems occur in networked control systems,
namely, time-triggered and event-triggered NCSs [3]. In
time-triggered NCSs, an activity in each node is assigned
a distinct time interval such that it can access the communi-
cation network without any conflict with other nodes during
the designated time intervals. By contrast, in event-triggered
NCSs, the transmission requests of each node are triggered
by its own timer or by certain values of the system states
[4]. Contentions are unavoidable in event-triggered NCSs
because of the lack of explicit timing control of events.
Usually, priorities are assigned to events to resolve contenti-
ons. This priority-based scheduling introduces time-varying
delays in control loops, which may dramatically degrade
control performance if not compensated by controllers.

A challenge for controlling event-triggered network sys-
tems lies in the integration of control with time delays caused
by contentions [5], [6]. Model predictive control (MPC) is a
natural approach to address this challenge, by incorporating
time delays as constraints [7]. Because of this advantage,
MPCs have been adopted for networked control in applica-
tions such as vehicle control [8]. If accurate estimations for
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time delays are available, MPC can predict how systems’
states are influenced by the time delays and then design
optimal control commands accordingly. Works such as [9]
and [10] have shown the effectiveness of MPC to compensate
for time delays in event-triggered NCSs. However, these met-
hods assume that a pre-defined priority assignment is chosen
and do not consider time delays induced by contentions. In
many cases, priorities also need to be designed because poor
priority assignment can violate the stability of the NCSs.

Existing works (such as [11] and [12]) use classical
scheduling algorithms to assign priorities when a contention
happens. These algorithms include rate monotonic sche-
duling (RMS) and earliest deadline first (EDF) algorithms
introduced by [13]. However, such priority assignments may
lead to poor control performance for MPC, because RMS
and EDF can only guarantee network schedulability, but not
system stability or controller performance. In [14], the aut-
hors proposed a dynamic priority assignment method based
on system state errors. This priority assignment method can
ensure the stability of the system, but it can only be applied to
NCSs with first-order plants. How to design a proper priority
assignment for more general NCSs to ensure good control
performance has not been addressed in the literature.

In this paper, we propose a novel method to dynami-
cally assign priorities for MPC in event-triggered NCSs,
to minimize the overall performance degradation caused
by contentions. Our method differs from existing methods,
because we consider priorities as independent decision va-
riables in the objective function. By tuning the priorities of
each node, MPCs may achieve better performance. Our pro-
blem is formulated as a mixed integer optimization problem
(MIP) with a very large search space, rendering difficulty
in computing the optimal solution. We propose a method to
solve this optimization problem without excessive demand
on computing resources. Our method has two steps. First,
we convert the coupled priority and control optimization
problem into a path planning problem. Second, we modify
the A-star algorithm [15], which has been widely used for
online path planning in robotics, to search for the optimal
priority assignment. The proposed method integrates MPC
with optimal priority assignments using the A-star algorithm.
This method can be applied to general NCSs with both linear
and nonlinear plants. To the best of our knowledge, these
contributions had not been documented in the literature.

II. SYSTEM MODELS

We consider an NCS with N independent feedback con-
trol loops sharing a priority-based communication bus. The
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control loops consist of distributed sensors, controllers and
actuators. We assign a distinct priority to each control loop
and each loop utilizes the communication bus to send plant
sampling data to its controller. At any time, only one control
loop can access the communication bus and transmit data.

A. Sensor Message Chain

Each sensor in a control loop generates one message chain,
which is denoted by ξi for i=1, ..., N . Each message chain
consists of a sequence of sampling messages, denoted by
{ξi[1], ξi[2], . . .}. The generating time of sensor message
ξi[k] for each k is denoted by tsi [k] and we assume that
tsi [1] = t0 for all i, i.e., the chains all generate the first
sensor message at time t0, which will be the left endpoint
of our time horizon [t0, tf ]. Each sensor message ξi[k]
contains the measurement of plant i. The timing of ξi can
be characterized by pairs (Cs

i [k], T s
i [k]), where Cs

i [k] is
the amount of time needed for sensor i to transmit ξi[k]
to controller i when no contentions occur, and T s

i [k] =
tsi [k + 1]− tsi [k]. The parameters can be estimated [16].
Based on tsi [k], we can convert (Cs

i [k], T s
i [k]) into piecewise

constant functions (Cs
i (t), T s

i (t)) by setting Cs
i (t) = Cs

i [k]
if t ∈ [tsi [k], tsi [k+ 1]), and similarly for T s

i (t). We use
CT(t)={(Cs

i (t), T s
i (t))}Ni=1 to represent the parameter set.

In NCSs, a time delay δi[k] = tei [k] − tsi [k] exists during
data transmission, so the sensor message ξi[k] arrives at
controller i at a time latter than its generation time, denoted
by tei [k]. For each i and k, we assume tei [k] ≤ tsi [k + 1].
At time tei [k], controller i is activated to compute control
command ui[k] based on the measurement xi(tsi [k]):

ui[k] = κi(xi(t
s
i [k])), ui[k] ∈ Ui (1)

where κi represents the feedback control law computed by
MPC, and Ui is the constrained space for control commands.
Then with a zero order hold, the control ui[k] is converted
to a continuous-time control ui(t):

ui(t) = ui[k], t ∈ [tei [k], tei [k + 1]) (2)

If no contention happens, δi[k] equals Cs
i [k]. However,

if contention happens when ξi[k] is transmitting, the plants
with higher priorities will interrupt the transmission of ξi[k],
causing the time delay δi[k] to change according to the
priority assignment among the message chains at that time.
The relation between the priority assignment and the time
delays is very complex. Hence, we need the following
explicit timing model to show how the priority assignment
changes the time delays.

B. Dynamic Timing Model

We established a dynamic timing model (DTM) in [17]
and [18]. We will briefly review the DTM in this section.
At each time t ∈ [t0, tf ], we define the DTM state variable
Z(t) = (D(t), R(t), O(t)) as follows:

Definition 1: The deadline variable is D(t) =
(d1(t), ..., di(t), ..., dN (t)), where di(t) denotes how
long after time t the next message of message chain ξi will
be generated. �

Definition 2: The remaining time variable is R(t) =
(r1(t), ..., ri(t), ..., rN (t)), where ri(t) is the remaining
transmitting time after time t that is required to complete
the transmission of the most recently generated sampling
message in message chain ξi. �

Definition 3: The delay variable is O(t) =
(o1(t), ..., oi(t), ..., oN (t)), where oi(t) denotes how
long the transmission of the most recently generated
sampling message in message chain ξi has been delayed
from its generation time to time t. �

Definition 4: The priority assignment is P(t) =
(p1(t), ..., pi(t), ..., pN (t)) ∈ P({1, ..., N}), where pi(t) is
the priority assigned to ξi at time t and such that for each i
and j in {1, ..., N}, we have pi(t) < pj(t) if and only if ξi
is assigned higher priority than ξj at time t. �

Here P({1, ..., N}) is the set of all permutations of
{1, ..., N}, so for each t ∈ [t0, tf ], the value of pi(t) is
a positive integer in {1, . . . , N}, such that pi(t) is distinct
from other message priorities, i.e., pi(t) 6= pj(t) if i 6= j.

The evolution rules for Z(t) on [t0, tf ] are expressed by
mathematical equations. We first divide [t0, tf ] into sub-
intervals [tw, tw+1] such that messages can only be generated
at either tw or tw+1 (but not on the open interval (tw, tw+1)).
For w > 0, the evolution rules at tw are as follows:

di(tw) = di(t
−
w) + (1− sgn(di(t

−
w)))T s

i (tw),

ri(tw) = sgn(di(t
−
w) + ri(t

−
w)) ri(t

−
w)

+ (1− sgn(ri(t
−
w))) (1− sgn(di(t

−
w )))Cs

i (tw),

oi(tw) = oi(t
−
w) sgn(di(t

−
w))

+ oi(t
−
w) sgn(ri(t

−
w))(1− sgn(di(t

−
w))), (3)

where sgn is defined by sgn(p) = 1 if p ≥ 0 and sgn(p) =
−1 if p < 0, and the superscripts − indicate a limit from the
left. For any time tw + ∆t ∈ (tw, tw+1), the evolutions are:

di(tw + ∆t) = di(tw)−∆t,

ri(tw + ∆t) =

max

{
0, ri(tw)−max

{
0,∆t−

∑
q∈HPi(tw)

rq(tw)

}}
,

and oi(tw + ∆t) = oi(tw)

+ sgn(ri(tw))min

{
∆t, ri(tw) +

∑
q∈HPi(tw)

rq(tw)

}
,

(4)

where HPi(tw) = {j ∈ {1, . . . , N} : pj(tw) < pi(tw)} is
the set of all indices of message chains which have higher
priorities than message chain ξi at time tw.

Combining all of the evolution rules in (3)−(4) leads
to the DTM model, which computes the value of Z(t) at
time t, given the initial state variable Z(t0), the sensor
message parameters CT(t0 ∼ t) and a specific priority
assignment P(t0 ∼ t), where CT(t0 ∼ t) is a simplified
notation to represent the sensor message parameters for all
message chains during the time interval [t0, t] and similarly
for P(t0∼ t). We also use this notation:

Z(t) = H(t;Z(t0),CT(t0∼ t),P(t0∼ t)) . (5)
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By our assumption that tei [k] ≤ tsi [k+ 1] for all i and k, we
have δi[k] = Z2N+i(t

s
i [k + 1]−), where tsi [k + 1]− denotes

the left limit and Z2N+i(t
s
i [k+1]−) denotes the (2N + i)-th

element of Z(tsi [k+1]−), i.e., oi(tsi [k+1]−). The event time
tei [k] can be calculated as:

tei [k] = tsi [k] + δi[k]. (6)

III. PROBLEM FORMULATION

We formulate the problem of designing the optimal prio-
rity assignment for networked event-triggered MPC. For the
i-th control loop, the system is denoted by

ẋi(t) = fi(xi(t), ui(t)),
yi(t) = gi(xi(t)), for some functions fi and gi,

(7)

where xi(t) is the plant state, yi(t) is the plant output, and
the piecewise constant control ui(t) is described by (2).

By (5)-(6), different priority assignments result in different
event times. Here we formulate a continuous-time MPC
problem P(x(t0), t0) with a dynamic priority assignment.
The goal is to find an optimal priority assignment P0(t) =
(p0

1(t), ..., p0
N (t)) and an optimal control command u0(t) =

(u0
1(t), ...u0

N (t)) within the time interval [t0, tf ], such that
the output of each plant converges to a value γi, i.e., we
want to steer the state xi(t) to a target state x̄i corresponding
to the value γi that satisfies the equations gi(x̄i) = γi and
fi(x̄i, ūi) = 0. We assume that such a solution pair (x̄i, ūi)
exists, and we denote the solution by (x̄i(γi), ūi(γi)). If
multiple solutions exist, then (x̄i(γi), ūi(γi)) is selected such
that |xi(t0)−x̄i(γi)|2 is minimal, where xi(t0) is the initial
state of plant i. In practice, this can allow a broad class of
possible performance objectives.

Given initial states x(t0) = (x1(t0), ..., xN (t0)), initial
controls u(t0) = (u1(t0), ..., uN (t0)), and message chain
parameters CT(t) for all t, the contention resolving MPC is
to find values for the decision variables P(t) and u(t) that
solve the following optimization problem P(x(t0), t0):

min
u(t),P(t)

N∑
i=1

Vi(xi(t0), t0), where

Vi(xi(t0), t0) =
1
2

∫ tf
t0

{
|xi(t)−x̄i(γi)|2Qi

+|ui(t)−ūi(γi)|2Ri
}dt

+ρ|xi(tf )− x̄i(γi)|2Ki
,

(8)

where |xi(t) − x̄i(γi)|2Qi
= [xi(t) − x̄i(γi)]

TQi[xi(t) −
x̄i(γi)] and similarly for the other two quadratic forms, where
Qi, Ri, and Ki are given positive definite matrices, and ρ >
0 is a given constant. The problem P(x(t0), t0) has these
constraints for all t ∈ [t0, tf ]:

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)), (9a)
ui(t) = ui(t0), t∈ [t0, t

e
i [1]),

ui(t) = ui[k], t∈ [tei [k], tei [k + 1]), (9b)
Z(tsi [k + 1]−)= H(tsi [k + 1]−;Z(t0),

CT(t0∼ tsi [k + 1]),P(t0∼ tsi [k + 1])),

tei [k] = tsi [k] + δi[k] for all k s.t. t0 ≤ tei [k] ≤ tf , (9c)
ui(t) ∈ Ui, P(t) ∈ P({1, ..., N}). (9d)

Since the two sets of decision variables are coupled, this
problem is a mixed integer optimization problem (MIP)
that is difficult to solve, for two main reasons. First, the
two decision variables are actually two functions of time.
Second, because of the complex timing mechanism of event-
triggered NCSs, we cannot express the relation between
priority assignments and the objective by explicit functions.
Therefore, most existing techniques in optimal control or
MIP cannot be directly applied to solve this problem.

IV. PROBLEM TRANSFORMATION

We convert the difficult MIP problem formulated above
into a path planning problem that we wish to solve iteratively.
We first use the DTM to detect the time instants when sensor
message transmission contention happens.

Proposition 1: Contention starts at time t if and only if
the following condition holds:

N∑
i=1

sgn(ri(t)) ≥ 2 and
N∑
i=1

sgn(ri(t
−)) ≤ 1, (10)

where ri(t−) is the limit from the left. �
Proof. Based on Definition 2, if a message chain ξi has not

finished transmission at t, then ri(t) > 0 and sgn(ri(t)) = 1.
Since ri(t) is always nonnegative, sgn(ri(t)) ≥ 0 for all t.
Hence, the number of nodes that want to transmit data on the
network at time t can be calculated as

∑N
i=1 sgn(ri(t)). The-

refore,
∑N

i=1 sgn(ri(t)) ≥ 2 means that two or more nodes
want to communicate, which means contention is occurring
in the network at time t. Since

∑N
i=1 sgn(ri(t

−)) ≤ 1 means
that no contention happens at time instants before t that are
close to t, the result follows. �

We assume that the contention starting times se-
quence satisfying the conditions in Proposition 1 are
{tc1, ..., tcl , ..., tcle−1} where l is the index of contention times.
We set tc1 = t0 since we assume that all message chains
generate the first sensor message at time t0 and tcle−1 is the
largest contention time satisfying tcle−1 < tf and let tcle = tf .
Based on the contention time sequence, we introduce a tree
structured directed graph that will be used to analyze our
algorithm for optimal priority assignment.

A weighted tree T = (V,E) consists of a leaf set V =
{vn} for n = 0, ...,Σ and a branch set E = {en,j}. Each
contention starting time is associated with leaves, and each
branch en,j is associated with a cost wn,j . We will explain
how we construct all elements in the tree one by one. First
we define the following variables which characterize a leaf.

Definition 5: The time stamp τ : V → [t0, tf ] is defi-
ned as τ(vn), where τ(vn) is the contention starting time
associated with leaf vn. �

Definition 6: The system status variable of leaf vn, deno-
ted by X (vn), equals the system states value at τ(vn); the
control status variable U(vn) equals the control command
value at τ(vn); and the timing status variable D(vn) equals
the DTM states value at time τ(vn). �

These variables are necessary because they are unique
with respect to each leaf. Because of different priority
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assignments, status variables of two leaves can be different
even if these two leaves have the same time stamp.

The tree T starts from the root v0, which is the unique
leaf such that τ(v0) = t0, expands through internal leaves
vn for n = 1, ...,Σ − 1, and ends at the terminal leaf vΣ.
The root, internal leaves and terminal leaf are connected by
branches, with the direction pointing away from the root. The
construction of a tree starts from the root v0, with X (v0) =
x(t0), U(v0) = u(t0) and D(v0) = Z(t0). New leaves and
branches will be generated and added to the tree iteratively.

For a contention time tcl for l = 1, ..., le − 1, we generate
new branches from the leaves whose time stamp equals tcl .
Let Λ(tcl ) denote the contention set at tcl , i.e., Λ(tcl ) =
{i ∈ {1, ..., N} : ri(t

c
l ) > 0} and M = Card(Λ(tcl )),

where the cardinality function Card(·) measures the number
of elements in a set. Let Pm be the m-th permutation in
P({1, ...,M}) when P({1, ...,M}) is ordered lexicographi-
cally, so m ∈ {1, 2, ..,M !}. Then for each leaf whose time
stamp is tcl , we generate M ! branches from it, and each of
these branches ends at a new leaf that we assign the time
stamp tcl+1. Each branch corresponds to a unique priority
assignment in P({1, ...,M}). The m-th branch en,j+m ex-
pands from vn and connects to a new leaf vj+m based on
Pm, where j is the number of existing leaves in the tree
before we generate new branches from leaf vn. The branch
cost wn,j+m is defined to be the solution of the following
optimization problem Pw(X (vn), tcl ,Pm) given Pm:

Pw(X (vn), tcl ,Pm) : min
u(t)

N∑
i=1

Vi(Xi(vn), tcl ), (11)

satisfying the following constraints:

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)),

xi(t
c
l ) = Xi(vn), ui(t

c
l ) = Ui(vn),

ui(t) = ui[k], t ∈ [tei [k], tei [k + 1]), ui(t) ∈ Ui,

Z(tsi [k + 1]−) =

H(tsi [k + 1]−;D(vn),CT(tcl ∼ tsi [k + 1]),Pm),

δi[k] = Z2N+i(t
s
i [k + 1]−),

tei [k] = tsi [k] + δi[k] for all k s.t. tcl ≤ tei [k] ≤ tf

(12)

where Xi(vn) and Ui(vn) are the i-th elements of X (vn)
and U(vn), respectively, and Z(tsi [k + 1]−) is generated by
(3)-(4) as before except with a fixed priority assignment Pm

instead of all possible priority assignments as in (9c).
Given a solution of (11), we obtain the optimal control

u0(t). The status of the new internal leaf vj+m and the
branch cost wn,j+m can be calculated as follows and we
say that the leaf vn is a parent leaf of vj+m (and vj+m is a
child leaf of vn):

τ(vj+m) = tcl+1, U(vj+m) = u0(tcl+1),
Xi(vj+m) = φi(t

c
l+1;Xi(vn), tcl , u

0
i (t)), 1 ≤ i ≤ N,

D(vj+m) = H(tcl+1
−;D(vn),CT(tcl ∼ tcl+1),Pm),

wn,j+m =
N∑
i=1

∫ tcl+1

tcl

{
|φi(t;Xi(vn), tcl , u

0
i (t))− x̄i(γi)|2Qi

+
∣∣u0

i (t)− ūi(γi)|2Ri

}
dt

(13)

for l ≤ le−1, where φi(t;Xi(vn), tcl , u
0
i (t)) is the trajectory

of the system ẋi(t) = fi(xi(t), u
0
i (t)) for the initial condition

xi(t
c
l ) = Xi(vn) and u0

i (t) is the i-th element of u0(t).
Remark 1: The optimal control design is embedded in the

branch cost calculation. To calculate wn,j+m in (13), we
need to design the optimal control law u0(t) for (11) and
the first time interval [tcl , t

c
l+1] of the optimal control law

is applied to compute the branch cost, which is a standard
MPC design under a fixed priority assignment. We can use
the MPC design methods from [18] and [7] to compute u0(t).
Note that only a small fraction of branch costs needs to be
computed in our algorithm, which we introduce later. �

For any internal leaf vn with τ(vn) = tf , we connect vn
to the terminal leaf vΣ and the branch cost wn,Σ is

wn,Σ =ρ

N∑
i=1

|Xi(vn)−x̄i(γi)|2Ki
, (14)

for all n such that τ(vn) = tf and n 6= Σ.
Based on the tree model, the MIP problem P(x(t0), t0) in

Section III can now be converted to the problem of finding
a path from the root v0 to the terminal leaf vΣ such that the
whole cost along the path is lowest. A tree contains multiple
paths and the total path cost has the same formula as the
cost function in P(x(t0), t0). Among all the paths, the lowest
cost path can be found by path planning algorithms and the
priority assignments and control commands along the lowest
cost path will be solutions for the MIP problem P(x(t0), t0).

Constructing the whole tree T would be exhaustive and
unrealistic when considering a relatively large number of
control loops or a long time window for NCSs. This motiva-
tes our work in the next section, where we propose a search
algorithm that only needs to construct a subtree Ts ⊆ T
while we are searching for the optimal path.

V. OPTIMAL PRIORITY ASSIGNMENT

We leverage the A-star algorithm from [15] to search for
an optimal path from v0 to vΣ. Let f(vn) be the minimal
cost over all paths p∗ from the root to the terminal leaf such
that vn is on the path p∗. The cost f(vn) can be expressed as
f(vn) = g(vn) + h(vn), where g(vn) is the cost of the path
from the root v0 to any leaf vn, and h(vn) is the minimal
future cost from vn to the terminal leaf vΣ. For A-star to
apply, an estimation ĥ(vn) of future cost is needed for which
ĥ(vn) ≤ h(vn) for all vn, so the algorithm can eventually
make the estimated cost f̂(vn) = g(vn) + ĥ(vn) converge
to the actual cost f(vn) when vn = vΣ. The following cost
functions are used for our algorithm:

f̂(vn) = g(vn) + ĥ(vn) and g(vn) = g(vp) + wp,n, (15)

where p is the index of the parent leaf of vn.
The estimated cost ĥ(vn) is computed by solving the

following optimization problem Ph(X (vn), τ(vn)):

ĥ(vn) = min
uh(t)

N∑
i=1

Vi(xi(τ(vn)), τ(vn)), (16)

s.t. ẋi(t) = fi(xi(t), u
h
i (t)), yi(t) = gi(xi(t)),
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Algorithm 1: Main Program
Data: t0, tf , γi for 1 ≤ i ≤ N , X (v0) = x(t0),

U(v0) = u(t0), D(v0) = Z(t0), τ(v0) = t0
Result: P0(t)

1 Let OpenSet = {v0, vΣ}, SubTree = {v0, vΣ},
f̂(v0) = ĥ(v0), f̂(vΣ) =∞, tcl = t0;

2 while tcl ≤ tf do
3 vn is the leaf in OpenSet with minimal f̂ cost;

tcl = τ(vn);
4 if τ(PT (vn)) == tf then

return Reconstruct(vn); Breakwhile;

5 if tcl == tf then
Calculate wn,Σ by equation (14);
if g(vn) + wn,Σ < f̂(vΣ) then

f̂(vΣ) = g(vn) + wn,Σ;

6 else
7 Λ={i :ri(tcl )>0, i=1, ..., N}; M=Card(Λ);
8 for m-th permutation Pm∈P({1, ...,M}) do
9 (vj+m, wn,j+m) = Expand(vn,Pm,tcl );

/*j is size of SubTree.*/
10 Add vj+m into OpenSet and SubTree sets;
11 g(vj+m) = g(vn) + wn,j+m;
12 Solve Ph(X (vj+m), τ(vj+m));
13 f̂(vj+m) = g(vj+m) + ĥ(vj+m);

14 Remove vn from OpenSet list;

Algorithm 2: Expand
Data: vn, Pm, tcl
Result: vj+m, wn,j+m

1 Find the next contention time tcl+1 under priority Pm

based on (5) and (10);
2 Solve Pw(X (vn), tcl ,Pm) formulated by (11) to obtain

u0(t) and compute wn,j+m, Xi(vj+m)i, U(vj+m),
D(vj+m) and τ(vj+m) using (13);

return vj+m, wn,j+m

xi(τ(vn)) = Xi(vn), uhi (t) ∈ Ui,

where uh(t) = (uh1 (t), ..., uhi (t), ..., uhN (t)). Notice that
uh(t) is not constrained to be piecewise constant.

Proposition 2: The condition ĥ(vn) ≤ h(vn) is valid for
all vn ∈ T. �

Proof. The estimated cost ĥ(vn) is obtained by solving
the optimization problem Ph(X (vn), τ(vn)). The actual fu-
ture cost h(vn) is obtained by solving the optimization
problem P(X (vn), τ(vn)) defined by (8)-(9c). Comparing
Ph(X (vn), τ(vn)) and P(X (vn), τ(vn)), these two optimi-
zation problems have the same cost function and initial
conditions. The differences are that the decision variable
u(t) in P(X (vn), τ(vn)) is constrained to be piecewise
constant function that depends on the priorities, while
uh(t) in Ph(X (vn), τ(vn)) can be any arbitrary real valued
function. Therefore, the optimal solution u0(t) given by
P(X (vn), τ(vn)) must be a feasible solution but may not be

an optimal solution for Ph(X (vn), τ(vn)). In other words,
ĥ(vn) is less or equal to h(vn) for all vn. �

The A-star algorithm does not generate the whole tree T.
Instead, it efficiently generates a subtree Ts ⊆ T because
A-star only expands the leaf with minimal f̂ cost at each
iteration. Algorithms 1-2 present the pseudocode for our
proposed algorithm based on the A-star algorithm to solve
optimization problem P(x(t0), t0). The optimal path search
starts from the root v0. At each iteration of the main program
in Algorithm 1, the algorithm determines which leaf to
expand further by selecting the leaf vn with minimal f̂ cost
in the OpenSet. OpenSet is a set of open leaves. There are
three cases after the algorithm selects a leaf vn:

1) If leaf vn is actually the terminal leaf, then the algo-
rithm has found the path from the root leaf to the terminal
leaf that minimizes the cost f̂(vΣ), which equals the actual
cost f(vΣ). The program then backtracks the path from vΣ

to v0 to obtain the optimal priority assignment P0(t) for all
t ∈ [t0, tf ] and terminates the algorithm.

2) If τ(vn) equals tf , then calculate the terminal branch
cost wn,Σ in equation (14). We compute the total path cost
f̂(vn) from v0 to vΣ through vn. If the total path cost is less
than previous total path cost f̂(vΣ), then we update the cost
f̂(vΣ), by replacing f̂(vΣ) by the new value f̂(vn).

3) If τ(vn) is not tf , leaf vn will be expanded by genera-
ting its children leaves by Algorithm 2 and we add all of its
children leaves to OpenSet and SubTree, where SubTree
keeps track of the leaves that our algorithm has generated.
The costs f̂ for the children leaves are computed based on
(15) and (16). Then the algorithm removes the expanded leaf
vn from OpenSet and goes to the next iteration.

Fig. 1. Subtree Ts. Blue circle represents v0 and red circle represents
vΣ. Green circles represent the open leaves. Solid black arrows represent
branches and dashed green arrows represent the estimate cost ĥ(vn).

Fig. 1 illustrates a subtree Ts constructed by our algorithm.
Contentions occur three times on the time interval [t0, tf ]. At
tc1 and tc2, two control loops have contentions. At tc3, all three
control loops have contentions. Some internal leaves in tree
Ts are open because our algorithm does not expand every
leaf but intelligently expands some leaves without losing
optimality. Once Ts reaches the terminal leaf, our algorithm
backtracks the path along the red arrows. The total number
of branches generated by the algorithm is 13. It reduces the
computational workload.
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Fig. 2. Outputs of the Three Plants from Section VI. The red solid lines
show the plant output under optimal priority assignment, and the blue solid
lines show the plant outputs under EDF. The outputs under RMS are the
same as EDF. The dashed lines show the control ui computed by the MPC.

It follows that Algorithm 1 finds the optimal solution
P0(t) and u0(t) for P(x(t0), t0) provided by the A-star
algorithm. To see why, notice that from [15, Theorem 1],
the A-star algorithm finds the minimal total cost from v0

to vΣ if ĥ(vn) ≤ h(vn) for all vn. Since we have already
shown that this condition is satisfied in Proposition 2, the
conclusion follows.

VI. SIMULATION

We simulate an NCS consisting of three scalar systems
ẋ1(t) = x1(t) +u1(t), ẋ2(t) = 4

3x2(t) +u2(t), and ẋ3(t) =
3
2x3(t) + u3(t) with the initial conditions xi(0) = 1 and
ui(0) = 0. The control constraints are ui(t) ∈ [−3, 3] for
i = 1, 2, 3. The output of each plant is the state xi(t). The
time horizon is from 0 to 6 seconds. The cost function is

Vi(xi(0), 0) = 1
2

∫ 6

0

{x2
i (t) + 0.0001u2

i (t)} dt+ x2
i (6)

and the reference signal is γi = 0 for all i. The message
chain parameters are (C1[k], C2[k], C3[k]) = (0.3, 0.3, 0.3)
and (T1[k], T2[k], T3[k]) = (1, 1.5, 2) in seconds. The three
plants are all stabilizable if no contention exists.

We compare the optimal priority assignment computed by
our algorithm with the priority assignments under RMS and
EDF. The outputs of the plants are in Fig. 2. Plant 3 is unsta-
ble under the priorities assigned by RMS and EDF, for which
the third plant is always assigned the lowest priority and has
the longest delays. Under the optimal priority assignment,
the three plants are all stable because the optimal priority
assignment slightly sacrifices the control performance of
plant 1, by assigning plant 1 lowest priority and plant 3 with
the highest priority from 0 to 2s. This illustrates the benefit
of our optimal priority assignment approach.

VII. CONCLUSIONS

Resolving contentions in event-triggered networked cont-
rol systems is a challenging problem that is of compelling
ongoing engineering interest. We presented a novel algorithm
to design priority assignments for event-triggered model
predictive control in networked control systems. Our co-
design approach is a novel way to synthesize priority assign-
ments and control laws, and has the potential to significantly
improve the performance of networked control systems.
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