2017 American Control Conference
Sheraton Seattle Hotel
May 24-26, 2017, Seattle, USA

Adaptiveness and Consistency of Expert Based Learning Algorithms
Selecting Reactions to Human Movements

Carol Young'!, Ayesha Khan! and Fumin Zhang'

Abstract— Expert based learning algorithms have been used
by robots to choose satisfying reactions to human movements.
These algorithms often demonstrate random performance that
tries to hit a balance between adaptiveness and consistency that
matches human’s preferences intuitively. This paper provides a
rigorous way to quantify the adaptiveness and consistency of the
expert based learning algorithms in the context of human robot
interaction. It is discovered that a Markov chain model can be
used to allow the analysis of both adaptiveness and consistency
for several popular expert based learning algorithms. Success of
the method has been seen in both simulation and experimental
work.

I. INTRODUCTION

The role of robots is not just limited to industry; friendly,
safe and portable robots are increasingly being used for ev-
eryday household chores as well. For example, the iRobot’s
Roomba is a popular device that automatically vacuums the
house regardless of any obstacles present on the floor. With
the increasing penetration of robots in our everyday lives,
it has become extremely important that robots learn how to
interact with humans in a safe and predictable way [1], [2].

For safe and predictable human-robot interaction (HRI),
research is currently being done in order to enable robots
make the right decision when collaborating with humans [3]—
[5]. One of these methods involves online learning algorithms
[6]. An online learning algorithm typically interacts with
a concept, which is an unknown mapping of observed
parameters, to an expected output. Consider the case with
two possible outputs; the expected output with the higher
probability of occurring is denoted as the preference and
the other as deviation. The algorithm uses the observed
parameters to predict the expected output of the concept, and
then implant that output as the actual output. Afterwards,
a feedback is implemented where the expected output is
compared to the actual output from the system. If the
expected and actual outputs match, we say the selection
is correct, else we say that the learning algorithm has
incurred an error. Based on the feedback i.e. whether an
error happened or not, the learning algorithm will compute its
internal parameters to try to make the correct prediction for
the next interaction. Since these online learning algorithms
compute updates sequentially, they require less memory and

*The research work is supported by ONR grants N00014-14-1-0635 and
N00014-16-1-2667; NSF grants CMMI-1436284 and OCE-1559475; NRL
N0017317-1-G001; and NOAA NA16NOS0120028, and an ARCS Scholar
Award

ICarol Young, 'Ayesha Khan and 'Fumin Zhang are
with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332, USA

{cyoung44, ayeshakhan, fumin}@gatech.edu.

978-1-5090-5994-2/$31.00 ©2017 AACC

processing time as compared to offline, i.e. batch learning
algorithms. Hence, they are ideal for decentralized robotic
systems [7]. In this paper, we will focus on expert based
learning algorithms that includes the Winnow [8], weighted
majority [9], [10] and the dual expert algorithm [6].

One key characteristic of these algorithms is the behavior
each algorithm exhibits when it encounters uncertainty in
the concept. In HRI, concept can be a specific behavior
or reaction of a human. Generally, robustness is used as a
measure for tolerance to uncertainty, and has been studied by
means of error bounds for various online learning methods
[8], [10]. However robustness only measures how many
errors will occur, ignoring the sequence of error occurrences.
Since predictability is an important factor for HRI [1],
consistency, a specialized form of robustness, is needed to
measure how often the output of the algorithm changes when
there is uncertainty in the concept.

A second key characteristic of these algorithms is adap-
tiveness. A system is said to be more adaptive if it changes
its output quickly when the concept drifts, i.e. changes over
time. There are several online learning algorithms designed
specifically to adapt to drift, including changing experts [11],
regret minimization [12], and average tracking [13].

The above mentioned characteristics indicate how well an
algorithm might perform in real life scenarios. For example,
consistency is important in HRI systems where the human
might occasionally interact with a robot in unpredictable
ways or, sensors have noise in measuring the parameters and
feedback, but the robot’s output needs to remain predictable
to the human. On the other hand, adaptiveness is important
in HRI systems where the human changes their mind or
preference, over time causing drift in the concept. The robot
should be able to change its output accordingly without
incurring a lot of errors. Hence, there is a trade off between
these two characteristics that can be balanced [6].

Even though these parameters are important to gauge the
performance of a learning algorithm, to the best of our
knowledge, there has been no quantifiable way to measure
them. Previous works mostly use error or mistake bounds as
an indication of algorithm performance. In order to better
understand the underlying dynamics of these algorithms,
we propose a Markov chain analysis to quantify learning
algorithms.

Markov chains have been used extensively in the literature
for a wide range of applications. Some applications include
using hidden Markov models for speech recognition, com-
puting high dimensional integrals and analyzing exploration
strategies by autonomous agents. In this paper, we propose

1530

using Markov chains in order to evaluate the adaptiveness
and consistency of learning algorithms. To the best of our
knowledge, this is the first time Markov chains are being
used to analyze the performance of such algorithms.

In this paper, we consider three different ‘two expert’
learning algorithms; the Winnow algorithm, the weighted
majority algorithm (WMA) and the dual expert algorithm
(DEA). We show that each of these simple algorithms can
be represented and analyzed as a Markov chain. We then
use first step analysis in order to calculate the switching
time among various states of these algorithms. We claim
that switching time measured from a state with the preferred
output to a state, with a deviating output can be used as
a measure of consistency. Moreover, the switching time
measured from a state with a deviating output to one with the
preferred output, can be used as a measure on adaptiveness.
Thus for consistency, a longer switching time implies greater
consistency and vice versa. Likewise, for adaptiveness, a
shorter switching time implies greater adaptiveness and vice
versa. We analyze these characteristics for each of the
aforementioned algorithms and justify the obtained results.
This novel method has the potential to be generalized as
a means to gauge consistency and adaptiveness of online
learning algorithms.

The layout of the rest of the paper is as follows: Section II
introduces two expert learning algorithms. Section III defines
Markov chains for WMA and Winnow. Section IV shows the
analysis of DEA. Section V compares the obtained results
while Section VI is the conclusion.

II. TWO-EXPERT LEARNING ALGORITHMS

In this paper, we analyze two-expert learning algorithms.
We assume a “concept” will produce two outputs with
uncertainty, and the learning algorithm tries to select one
of two actions to react to one of the outputs. If the choice
of action is compatible with the output from the concept,
then we say the choice is made correctly. Otherwise, we
say an error is made by the algorithm. In the human robot
interaction context, the two outputs can be two different
human behaviors, and the actions can be two reactions a
robot has to choose from. See our previous work [6] for an
example where a mobile robot needs to decide whether to
move to the left or right, when encountering a human in a
corridor. For this example, the two actions will be moving
to the left or to the right for the robot, and the two results
will be whether the human is blocked by the robot or not.
If the robot made a correct choice then the human will not
be blocked. Otherwise, the human will be blocked.

In a two-expert learning algorithm, each expert is assigned
a weight. The two weights are adjusted after the algorithm
made a selection of action, and compared the outcome of that
action with the output from the concept. If a correct choice is
made, then the weight associated with the action chosen will
increase, otherwise the weight will decrease. The algorithm
will select the next action by comparing the two weights, and
the action associated with the larger weight will always be
selected. The algorithm generally starts by assigning equal

weights to both actions with a tie breaker rule to select one
of the actions. A general outline of a two-expert algorithm
is given in Algorithm 1. Line 7 in Algorithm 1 serves as a
tie breaker.

Algorithm 1 Two Expert Learning Algorithm
1: Set W =W, =0.5

2. if W) > W, then

3 a=1

4: else if W) < W, then

5: a=?2

6: else if Wi = W, then

7. a=1

8: end if

9: Choose the action associated with W,

10: Interact with the concept

Compare measured outcome with expected outcome
12: if Error then

13: Decrease weight W,

14: else if Correct then

15: Increase weight W, or maintain the value of W,
16: end if

—
—_

In order to analyze the performance of the learning algo-
rithms, some assumptions on the uncertainty associated with
the concept is necessary. We assume that the probability of
action 1 being compatible with the concept is p;, and the
probability for action 2 being compatible with the concept is
p2. We assume that p; + py =1 and p| # po. If p; > p», then
we say that the concept prefers action 1. If p; < p, then we
say the concept prefers action 2. We allow the values of p;
and p, to update.

The two-expert learning algorithm will try to learn the
preference of the concept. If the preference changes, the
learning algorithm will need to adjust to this drift. This
requires adaptiveness of the algorithm. On the other hand,
if the preference of the concept only changes temporarily,
then the learning algorithm should tolerate such changes.
This requires consistency of the algorithm. In this paper,
we consider three different expert learning algorithms: the
Winnow algorithm, the WMA and the DEA. The difference
in these algorithms is the way in which the weight of each
expert changes after every interaction with the concept. The
Winnow algorithm and the WMA are popular two-expert
algorithms. The DEA is proposed in our previous work [6].

III. MARKOV CHAINS FOR TWO ALGORITHMS

Here we construct Markov chains for the WMA and the
Winnow algorithm. The DEA will be discussed in section
IV. Let the ratio of weights W) and W, be defined by R such
that R = % We can represent the behaviors of R in the form
of a Markov chain for each of the two algorithms.

A. Weighted Majority Algorithm

The WMA either allows a decrease in the weights, or the
weights to maintain their previous value after, each selection

1531

is made. In Algorithm 1, line 13 can be replaced by W, = %
and line 15 by W, =W,.

At the start of the algorithm, W; and W, are both initialized
to % and thus R = 1. At this point action 1 is selected. Then
if the concept prefers action 1 the selection is correct, thus
Wi =W, W, =W, and R = 1. However if the concept prefers
action 2 then W} = %, Wo =W, and R = %

When R = % if the concept prefers action 1 the selection
is incorrect thus W) =W, W, = % making R = 1. However
if the concept prefers action 2 then Wy = W; W, =W, and
R= % Thus, R can only take two possible values: R = % or
R =1 at all times.

Let the states of a Markov chain be defined by the value
of R. Then, two states; z; and zp are defined where zy
corresponds to R =1 and z» corresponds to R = % The state
transition matrix, IPy; of the WMA, is as follows:

_|P1 P2
IP)M_[Pl PJ M

Note that the rows correspond to the present states of the
Markov Chain and the columns represent next states. For
example, if the present state is z; then the probability of
staying in z; is p; and the probability of going to z; is p».
The graph of this Markov chain is shown in Fig. 1. This is a
typical random switch model. We see that when a transition
between z; and z happens, a change of selection will be
made by the algorithm. We call such change of selection, a
switch. Then the states z; and z, are called switch states.

Fig. 1. Markov chain of the WMA. Red arrows represent a probability of
P2, blue of pj. States that give action 1 are colored light blue and states that
give action 2 are colored light red. The orange stars represent the transitions
that lead to a switch made by the algorithm.

B. Winnow Algorithm

The Winnow algorithm modifies the WMA by allowing an
increase in weights. In algorithm 1, line 13 can be replaced
by W, = % and line 15 by W, = 2W,. Hence, the Winnow
algorithm either allows a decrease in the weights in response
to an error or an unbounded increase in the weights.

As with the WMA, in the Winnow algorithm, both W
and W, are equal to % making the initial R = 1. Given any
combination of W; and W,, if the concept prefers action 1,
there are two possible results; if W; > W,, then if W is
selected and the selection made is correct, W; =2W,. If W| <
W, then if W, is selected and it is the incorrect choice, then
W, = % Since R = %, both of these results lead to R = 2R.
Likewise if the concept prefers action 2 the two possible
results are W) = % for an error or W, = 2W,. Both of these
results lead to R = %. Therefore all reachable states can be

P, >
P, >
- bw G T T
z G\\ @ z
2 _— o LIy
.‘.‘ - o { - 7_//" <\ / { - / k _7__7_,/':
Fig. 2. Markov chain of the Winnow algorithm. Red arrows represent a

probability of p,, blue of p;. States that give action 1 are colored light blue
and states that give action 2 are colored light red. The orange stars represent
which transitions would lead to a switch in output.

denoted by R = 2" where m can be any integer. If we assign
Zm to be the state where R = 2™, then the state transition
matrix, Py is an infinite dimensional matrix as follows:

0 pp 0 O

0
p2 0 pr 0 O
Py = 0 pp 0 p O 2
0 0 pp 0 py
0

0 0 0 P2

This is a typical discrete random walk model, with the graph
shown in Fig. 2. We can see that the transitions between
states zo and z_; correspond to a change in choice in the
algorithm. Hence the transitions are switches and the two
states zo and z_; are the switch states.

While the scope of this paper only considers a two expert
case, the formulation of these Markov chains can give us
insight into the formulation of chains when more experts are
used. The relative ratio of weights rather than the weights
themselves would still be used, however there would have to
be enough ratios so that all the weights could be related to
each other. In the worst case for n experts all of the unique
states could be represented by using n— 1 ratios. For Winnow
this could become an infinite lattice, while for WMA the
chain could be simpler, especially if assumptions were made
on the selection of experts. For example, if all experts have an
opposing expert that always predicted the opposite, then this
could limit the ratio between the maximum and minimum
weight, forcing a finite Markov chain.

C. Analyzing the Algorithms

We can analyze the two algorithms modeled by the
Markov chains. Suppose the starting state of each algorithm
is denoted by z,. Using first step analysis, it is possible to
find the average number of steps that can be taken to reach
a particular state from any given state [14]. The results are
called mean hitting times. We discovered that some of these
mean hitting times can be used to measure the adaptiveness
and consistency of the learning algorithms.

To increase readability of the analysis, let us suppose the
concept always prefers action 1, i.e. p; > p>. Note that this
does not mean we do not allow change of preference. In fact,

1632

if p1 < p2, then the analysis is completely symmetric. We
first define the measures for adaptiveness and consistency.

a) Weighted Majority Algorithm: For the WMA, its
adaptiveness is measured by the mean hitting time for
the state to start from z; and reach z;. Its consistency is
measured by the mean hitting time for the state to start from
z1 and reach zp.

b) Winnow Algorithm: For the Winnow algorithm, its
adaptiveness is measured by the mean hitting time for the
state to start from z_; and reach zg. Its conmsistency is
measured by the mean hitting time for the state to start from
zo and reach z_;.

Remark 3.1: Adaptiveness is defined as how fast an algo-
rithm is able to change its preference when a drift is encoun-
tered. To quantify adaptiveness, when action 1 is preferred,
the initial state, z; should be selected such that action 2 is
chosen by the algorithm. A smaller mean hitting time from
this initial state to the switch state where action 1 will be
chosen, will indicate a better adaptiveness. Consistency is
defined as how often an algorithm changes its output in case
it encounters a temporary change of preference. If action 1
is preferred, the initial state z; should be selected such that
action 1 is chosen by the algorithm. A larger mean hitting
time from this initial sate to the switch state where action 2
will be chosen, will indicate a better consistency

Remark 3.2: For the Winnow algorithm, any state z; for
s < (—=1) could have been chosen as the initial state to
compute adaptiveness, while any state z; for s > 0 could have
been chose as initial state to compute consistency. However,
to compare the Winnow algorithm with the WMA, the states
z—1 and zo are used.

Since both the random switch model and the discrete
random walk model are canonical examples to compute mean
hitting times in textbooks such as [14], we will just list results
here. For the WMA, the measure for adaptiveness is 14 = ﬁ,
and the measure for consistency is fc = i. For the Winnow
algorithm, the measure for adaptiveness is 7 = ﬁ, and
the measure for consistency is 7c = co. Comparison between
the two algorithms shows that the Winnow is less adaptive,
but more consistent, than the WMA. This agrees with our
previous simulation results [6].

IV. DUAL EXPERT ALGORITHM

The DEA was first proposed to balance adaptiveness and
consistency[6]. We have observed in both simulation and
experiments that the DEA has better adaptiveness than the
Winnow algorithm, and better consistency than the WMA.
Using the Markov chain analysis method developed in this
paper, we are able to give theoretical justification for these
observations.

The DEA either allows a decrease in the weights or a
bounded increase of the weights depending on the previous
selection. In Algorithm 1, line 13 is replaced by W, = %
and line 15 is replaced by

2W, if W, <

W, = . 1
WalfWa>Z

3)

Note, for ease of analysis we have changed this algorithm
slightly from our previous work [6] where the weight W,
was increased by taking its square root after W, > %. In this
paper W, is simply held constant when W, > %. This change
does not affect the performance of the algorithm, but allows
much simpler analysis using Markov chains.

Let S be the number of switches that the algorithm has
already encountered, then the number of possible states
depends on S. We label the states according to the value
of § and the ratio R, as illustrated in Figure 3. The state
transition matrix Pp satisfies the following:

P P2 0 0 0 0 0
0 P2 P1 0 0 0 0
0 0 0 p p2p 0 0
PD — 0 0 P2 P1 0 0 0 (4)
0O 0 O p» pr 0 O
0 0 0 0 0 P2 Pi

<

S=0 S=1 S§=2 S=3 S=4

Fig. 3. Red arrows represent a probability of p,, blue of p;. States that give
action 1 are colored light blue and states that give action 2 are colored light
red. The orange stars represent which transitions would lead to a switch in
output. S is the number of switches encountered and R represents the ratio
of W over W,

The unique feature of the DEA is, that the switch states
depend on S. z1, 22, z3, 25, z7 are all switch states. Hence,
the mean hitting time, starting and ending at these switch
states also depends on the value of S. Between S =0 and
S =1, the algorithm behaves like the WMA, but as S — oo,
the algorithm behaves similar to the Winnow algorithm since
the number of states increase to infinity.

Given the value of S and taking the assumption that
p1 > p2, we can now analyze the adaptiveness and con-
sistency of the algorithm. Its adaptiveness is measured by
the mean hitting time from the switching state with R = %
that corresponds to the value S (see Figure 3), to the next
switching state with R =1 that corresponds to the value S+ 1.
Its consistency is measured by the mean hitting time from
the switching state with R = 1 that corresponds to the value
S, to the next switching state with R = % that corresponds to
the value S+ 1.

Let ¢} represent the mean hitting time where the starting
state is the switching state that corresponds to R = % and

1533

Averaged and Expected Steps vs Number of Switch Cycles until Switching with 30 % Deviation Probability
450

= o DEAAverged
2 N 0 wiMsaverged
u% 250 || ——DEA Expected
= —— Whid Expected
= s00
5

@ s
L2 200
41
=L
ERrs
E
=
Z

sol

[05 1 75 z B 3 35 B a5 5
Number of Switch Cycles Started

Fig. 4. Expected and averaged steps until switching for a given n with
30% deviation probability

S =2n+1, and the ending state is the switching state that
corresponds to R =1 and S = 2n+2. Let # represent the
mean hitting time where the starting state is the switching
state that corresponds to R =1 and S = 2n and the ending
state is the switching state that corresponds to R =1 and
S =2n+ 1. We can compute both values as,

” n+1
- (5)

th=— [b

P2 ”

| | (&)n+1
tn :7$ 5
A P 1_% ()

See the Appendix for more details.

We see that when n = 0, tg = pl—z and tg = ﬁ. These
values are identical to the WMA. When n — o, since
p1 > p2, we have 17 = oo and 17 = 171117 . These values
are identical to the Winnow algorithm. Hence, the WMA
and the Winnow algorithms can be seen as extremes of the
DEA. For all the finite nonzero values of n, #} and (% assume
values in between the two extremes. This has confirmed
our observations from prior simulations and experiments
that the DEA is more adaptive than the WMA, and more
consistent than the Winnow algorithm [6]. As the number
of switches increases, the DEA becomes less adaptive and

more consistent.

V. RESULTS

In this section, we simulate WMA, Winnow, and DEA to
support the analysis in section III and IV.

We simulated the number of steps until switching takes
place for each of the three algorithms; WMA, Winnow and
DEA. 200 trials were done, each being 10,000 steps long
and having a deviation probability of 30%.

Figure 4 shows the expected and averaged number of steps
for both the WMA and the DEA. The Winnow algorithm
is not included in the figure, since in this algorithm, the
expected number of steps before switching takes place is
infinite, and the averaged number of steps is much larger
than the calculated steps for WMA and DEA.

As can be seen in Figure 4, WMA has a low consistency
irrespective of n, while DEA shows an exponential increase
in the number of expected steps, with an increase n, and thus
an increase of switches. In addition, it can be seen that the
averaged and expected values are close to one another.

Figure 5 shows a simulation for the average number of
steps an algorithm encounters, before it adapts to the drift.

Averaged Steps until Adapting ¥s Number of Steps before Drift with 30% Deviation Probability
120

|
s

MUmber of Steps urtil Adapting

0 [20 30 an 50 B0 70] 0 00
Number of Steps before Drift

Fig. 5. Averaged steps until adapting for a given number of steps before
drift with 30% deviation probability

This is simulated with respect to the number of steps the
algorithm encounters, before drift. This comparison was
chosen because a larger number of trials before drift occurs
could lead to an initial state z; farther from the switching
state, and an increase in n.

The number of steps before drift takes place was ranged
from 1 to 100 and 100 trials were simulated for each number
of steps. Also, the deviation probability was taken to be 30%
both before, and after drift.

Figure 5 shows that for WMA and DEA, the expected
number of steps before the algorithm adapts, remains rela-
tively constant, while the Winnow has a constant increase in
the averaged number of steps until it adapts.

For WMA, this is because it has a small 74 and the initial
distance to the switch state is always 1. For the Winnow
algorithm, this is because it not only has a greater 75 but
also the initial distance to the switch state is limited only by
the number of trials that have occurred. This shows that as
runtime increases, Winnow becomes less adaptive and thus
is not ideal for longterm learning.

For DEA, this result shows that the exponential increase of
the consistency helps slow the increase of n, limiting both £}
and the initial distance to the switch state. Therefore, DEA
maintains a stable adaptiveness for longterm learning.

Hence, it can be seen that DEA strikes the best balance
between consistency and adaptiveness.

VI. CONCLUSION AND FUTURE WORK

A novel approach is proposed to measure adaptiveness
and consistency for three learning algorithms: the WMA,
the Winnow algorithm, and the DEA, when two experts are
used. We model the behaviors of the learning algorithms
using Markov chains, and discover the connection between
mean hitting times, adaptiveness and consistency. Our work
is motivated by the HRI experiments in our previous work
[6]. Both adaptiveness and consistency are important char-
acteristics for online learning algorithms when applied to
human robot interaction. Our work has shown that Markov
chain analysis can be used to quantify both characteristics.
Future work consists of expanding the Markov chain analysis
to the multi-expert cases of learning algorithms.

REFERENCES

[1] C. Breazeal, “Social interactions in HRI: the robot view,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 34, no. 2, pp. 181-186, 2004.

1534

[2] H. Huttenrauch, A. Green, M. Norman, L. Oestreicher, and K. S.
Eklundh, “Involving users in the design of a mobile office robot,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 34, no. 2, pp. 113-124, 2004.

[3] M. Lauckner, F. Kobiela, and D. Manzey, “hey robot, please step
back!-exploration of a spatial threshold of comfort for human-
mechanoid spatial interaction in a hallway scenario,” in The 23rd
IEEE International Symposium on Robot and Human Interactive
Communication. 1EEE, 2014, pp. 780-787.

[4] B. Mutlu and J. Forlizzi, “Robots in organizations: the role of work-
flow, social, and environmental factors in human-robot interaction,” in
3rd ACM/IEEE International Conference on Human-Robot Interaction
(HRI). 1IEEE, 2008, pp. 287-294.

[5] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay, and
I. Werry, “What is a robot companion-friend, assistant or butler?” in
1IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2005, pp. 1192-1197.

[6] C. Young and F. Zhang, “A learning algorithm to select consistent re-
actions to human movements,” in 2016 American Control Conference
(ACC). 1IEEE, 2016, pp. 6152-6157.

[71 L. Kuncheva, “Classifier ensembles for changing environments,” in
Multiple Classifier Systems, ser. Lecture Notes in Computer Science,
F. Roli, J. Kittler, and T. Windeatt, Eds. Springer Berlin Heidelberg,
2004, vol. 3077, pp. 1-15.

[8] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
in Foundations of Computer Science, 1989., 30th Annual Symposium
on. IEEE, 1989, pp. 256-261.

[9] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm,” Machine learning, vol. 2, no. 4, pp.
285-318, 1988.

[10] A. Blum, “Empirical support for winnow and weighted-majority algo-
rithms: Results on a calendar scheduling domain,” Machine Learning,
vol. 26, no. 1, pp. 5-23, 1997.

[11] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” The Journal of Machine
Learning Research, vol. 8, pp. 2755-2790, 2007.

[12] K. Crammer, Y. Mansour, E. Even-Dar, and J. W. Vaughan, “Regret
minimization with concept drift”” in COLT, 2010, pp. 168-180.

[13] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Expo-
nentially weighted moving average charts for detecting concept drift,”
Pattern Recognition Letters, vol. 33, no. 2, pp. 191-198, 2012.

[14] N. Privault, “First step analysis,” in Understanding Markov Chains.
Springer, 2013, pp. 95-116.

APPENDIX: MEAN HITTING TIME

Given a Markov chain such as the one in Figure 3, we can
compute the mean hitting time from all states in a set Z, to
a target state. In Figure 3, each branch corresponding to a
value of S can be chosen as the set Z, and the next switch
state can be used as the target state.

If P, denotes the probability transition matrix of all the
states in set Z, then the mean hitting time for each state in
Z to hit the target state can be represented by a vector hg4.
Then hy must satisfy,

ha =1+ Pzhy (6)

where 1 is a vector containing all ones. Rearranging equation
(6), we can calculate hy as follows:

ha=(I—-P) "1 (7)

where [represents the identity matrix. Then, the mean hitting
time from the switch state in set Z can be found as one of
the components of the vector /4.

Next we show how to compute the mean hitting times for
the Markov chain of the DEA. Starting from state z;, we

use the branches that correspond to the value of S as the set
Z. Then, we get a sequence of transition matrices, P;. For

example,

P = [pi] (8)
Py~ = [p2] 9)
= 0 pi
P~ = 10
‘ L’z PJ (10)
— 0 p2
P53 = 11
z L’l Pz} (i
() D1 0
S=4
P =|p2 0 p; (12)
0 p2 pi
0 P2 0
PES=|p 0 p (13)
0 p1 p

Now let n= | 5 |. We can use the n to generalize the matrix
P>=%" where Z is selected to contain the branch with R >
1. We obtain a n+ 1 by n+ 1 matrix having the following
structure:

0 pi O 0 0 0
p2 0 m 0 0 0
e A S ()
0 0 0 oo P2 0 P1
0 0 0 ... 0 pi

Likewise, if we let the set Z to contain the branch with R < %,
we will get szz’”l as follows:

0 pp 0 ... 0 0 O
pr 0 pp ... 0 O O
= (9)
0 0 0 pi 0 p
0O 0 O 0 p1 p

It can be seen that matrices Py~ "' and P§=2" share a very
similar structure. The only difference lies in the position of
p1 and p» i.e. the locations of p; and p, are swapped.

Let us assume that p; > py. Let f} represents the mean
hitting time where the starting state is the switching state
that corresponds to R = % and S =2n+1, and the ending
state be the switching state that corresponds to R =1 and
§=2n+2. Let t{. represents the mean hitting time where the
starting state is the switching state that corresponds to R =1
and S = 2n and the ending state as the switching state that
corresponds to R =1 and S =2nr+ 1. Then, using equation
(7), we can compute both values as follows,

| " n+1
1 pi p P ’(E)
t8:7+72+73+...+ ol [_ oL
P2 p; P> 123 P2 P2
| ” n+1
1 2 n 1 7(*)
m=—t24 Py P2 AN (16)

pooptop T e 1R

1535

