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Abstract— We present a simple dynamical model for the
transmembrane potential in non-excitable mammalian cells.
This model allows us to mimic the effect of nanoparticles on
the transmembrane potential, by decreasing the permeability
of potassium ion channels. We show that our model agrees
with the trends observed in our experiments. However, it
also exhibits opposing trends under certain conditions, which
were not seen in the experiments. This indicates that the
membrane potential can be bistable. We analyze the cellular
conditions which may cause this apparent bistability. The effects
of adding nanoparticles on sodium and chloride ion channels
are also studied using the proposed model. We hypothesize
that nanoparticles may also block the sodium and chloride ion
channels but the extent of blockage of these ion channels may
differ from that of potassium ion channels.

I. INTRODUCTION

All mammalian cells develop a potential difference across
their membranes, commonly referred to as the membrane
potential or transmembrane potential. The cell membrane
allows transport of ions across it through ion channels
and ion pumps. However, it is selectively permeable, that
is, it has ion channels that selectively allow certain ions
to pass through the membrane. This selectivity develops
ion concentration gradients across the membrane, which
eventually cause a charge build up, and the associated
potential difference [1]. At the resting membrane potential,
the diffusion forces driving the ions down the concentration
gradient balance out the electrical forces due to the potential
difference, zeroing the net movement of ions across the
membrane. While defining the membrane potential for a cell,
the extracellular potential is usually considered the reference.
Since the potential inside the cell is lesser compared to that
outside, the resting membrane potential for a cell is usually
negative. Under normal resting conditions, a cell is referred
to as “polarized”. A cell with resting membrane potential
closer to zero is considered “depolarized”, while a cell rest-
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ing at a more negative membrane potential than the normal
membrane potential is referred to as “hyperpolarized”.

Cells are categorized as either excitable or non-excitable.
A cell falls under the excitable category if it has the capa-
bility to generate an action potential. An action potential
is a brief event in which the membrane potential first
rapidly increases and then rapidly decreases back to its
resting state [1]. Cancer cells, and other proliferating cells,
are non-excitable in nature. Changes in the transmembrane
potential have shown direct correlation with alteration in
cell proliferation [2]. This correlation may be used to cure
certain diseases, including cancer, which spread due to rapid
cell proliferation. There is evidence showing an increase
in growth of cancer cells with increased cell depolarization
[3]. This motivates us to model the transmembrane potential
in non-excitable cells such that it allows us to control the
transmembrane potential. It should be noted here that most
of the available literature, also discussed later in this section,
is on modeling excitable cells. However, studies have shown
non-excitable cells to be similar to excitable cells in terms
of ionic concentrations with some difference in relative
permeability of ions [9], [10], [11]. Hence, we can generalize
certain aspects of these models to non-excitable cells as well.

Over the past century, many models have been proposed
for the cell membrane potential. Hodgkin and Huxley [4]
were the first to analyze the presence of potassium and
sodium ionic currents in giant squid axons and presented
an electric circuit to model the transmembrane potential and
currents. The Hodgkin-Huxley model formed the basis of
many more conductance-based models to follow. Connor and
Stevens [5] extended this model by adding another transient
potassium current to model gastropod neuron somas. Morris-
Lecar[6] also presented another extended version of the
Hodgkin-Huxley model for barnacle muscle fiber cells. Mod-
els for the transmembrane potential are still being proposed
to better capture the dynamics of the biological system.
Recently, a very useful, but complex model in [7] presented
a system of differential equations to relate transmembrane
potentials, ionic concentrations and cell volume of cells.
Another very recent model was presented in [8] pointing out
the possibility of having a bistable behavior in non-excitable
cells similar to that seen in excitable cells. However, all the
models mentioned above are either too complex for analysis
or lack the ability to control the membrane potential through
an external stimulus.

Transmembrane potential, like many other biological pro-
cesses, exhibits nonlinear dynamics [12]. Examples can be



found on simulating such nonlinear biological processes [13].
Simulating the dynamics can allow better understanding of
the underlying biological process [14]. Moreover, there is
evidence that addition of nanoparticles in the vicinity of the
cell, affects the membrane potential by blocking certain ion
channels [15]. In our work, we sought to develop a nonlinear
model for the transmembrane potential which is accessible
to control-oriented analysis, with the control input being the
addition of nanoparticles. We take inspiration from the fact
that if we can control the transmembrane potential, we can
control the proliferation of cancer cells and hence provide a
possible cure for the disease in the future.

The aim of this paper is to come up with a simple dynamic
model which allows controlling of the resting transmembrane
potential of cell by regulating the permeability of its ion
channels. Our model is shown to be stable over a wide
range of permeability values and is seen to agree with the
experimental values of resting membrane potential if certain
constraints are met. The model successfully predicts the
effect on membrane potential of adding nanoparticles in the
vicinity of the cell. This paper provides an improvement to
our earlier presented model in [16] by overcoming certain
limitations mentioned later. We also show that our model
exhibits a different behavior under certain set of constraints,
which agrees with the work in [8]. The proposed model can
also be used to study the transient behavior of transmembrane
potential. Apart from that, we point out that using another
set of equations mentioned in [17] leads to a model with
unstable transmembrane potential.

This paper is organized in the following manner. In section
II, we present the experimental results that motivate this
work. Section III provides the background on existing cellu-
lar models. We present our proposed model for controlling
transmembrane potential in Section IV. In Section V, we
analyze the stability of the equilibrium points of the proposed
model. We present the apparent bistability of the membrane
potential, back our hypothesis with simulation results and
compare them with experimental data in section VI. In
Section VII, we further analyze our proposed model to see
the possible effect of nanoparticles on the ion channels not
observed in experiments. Section VIII presents the conclu-
sion and ideas for future work.

II. EXPERIMENTAL RESULTS

Experimental data was collected for two cell species: CHO
(Chinese Hamster Ovary) cells and HeLa (human cervical
cancer) cells. Both these cells are of the non-excitable and
proliferating kind and are widely used for experimentation
purposes. To set up the experiment, the cytosol of the cells
were stained with green-fluorescent DiBAC4(3) (bis-(1,3-
dibutylbarbituric acid) trimethine oxonol). DiBAC, is known
to diffuse more into the cell on increased depolarization,
hence we expect an increase in the DiBAC fluorescence
when the cell depolarizes. The cells were treated with dif-
ferent concentrations of 60nm amine-modified polystyrene
nanoparticles and the DIBAC fluorescence was monitored
using flow cytometry and fluorescence microscopy. Details
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Fig. 1: Fluorescence microscopy image of CHO cells without
(left) and with the introduction of red-fluorescent nanoparti-
cles (right). Nuclei are stained with DAPI (blue) while the
cytosol are stained with DiBAC4(3) (green) [16].

on the experimental setup and the results are provided in
[15]. Figure 1 shows the CHO cells without and with the
incubation of nanaoparticles. The red-fluorescent nanoparti-
cles bind to the exterior of the cell membrane. An increase
in the green fluorescence of DIBAC is visible in the cells
treated with nanoparticles. Similar trends were observed for
HeLa cells.

It was concluded in the experiments that the introduction
of nanoparticles causes cells to depolarize. On further inves-
tigation, it was also found that nanoparticles directly affect
the permeability of potassium ion channels by blocking the
channels. This causes an accumulation of positive charge
inside the cell, hence causing depolarization [15].

In the sections to follow, we create a model to fit these
experimental results. The next section provides the founda-
tional models which we extend to build up our model.

III. BACKGROUND

Figure 2 shows a simplified representation of a model
cell under normal conditions as described in [17]. The
ion channels are shown to be passages through the cell
membrane that allow passive movement of three types of ions
to and from the cell, that is, CI~(chloride), Na™* (sodium)
and KT (potassium). These channels are characterized by
their relative permeability, that is, the relative ease with
which the ions can flow through them. The resting membrane
potential is V,,, = —80mV for the ionic concentrations
mentioned in the figure and relative permeability Px = 1.0,
Prng = 0.02, Poy = 2.0. The figure also shows the channels
being blocked by nanoparticles, depicted as red circles.

A. Hodgkin-Huxley Model

In order to model the electrical activity in cell membrane,
Hodgkin and Huxley [4] presented a basic electrical circuit
appropriate to model a giant squid axon as shown in Fig. 3.
In this model, the membrane is represented by a capacitor
with capacitance C,,, called the transmembrane capacitance.
Also in the model, there is a sodium conductance Gy,
a potassium conductance Gx and a chloride or leakage
conductance G¢;. The values of these conductances depend
on the relative permeability of each individual ion channel.
A channel with higher permeability will have a higher value



Na Channel

Fig. 2: A simplified representation of a cell. [X]; and [X],
refer to the intracellular and extracellular concentrations
respectively of ion X. The red circles depict nanoparticles
blocking the channels.
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Fig. 3: The Hodgkin-Huxley membrane circuit containing Na
channel, K channel and CI channel [4]

of conductance. The membrane potential V,,, is considered
to be the potential inside the cell minus the potential outside
the cell and all the individual channel currents Ig, Iy, and
I¢y are positive in the outward direction (leaving the cell).
The individual potentials generated by each ion species are
represented by batteries (Ex, Eng, Eci). There is also an
externally applied current in the model represented by ..
Although this model was developed for a particular type of
excitable cells, the giant squid axon, it has been extended
and shown to be applicable for a wide variety of cells as
mentioned in Section I. Hence, we assume that this model
is also applicable to the CHO and HeLa cells used in our
experiments. Let’s further analyze this electrical circuit.
Applying the Kirchoff’s Current Law to the circuit in
Figure 3 gives,
IK +INa + ICZ = lext —

G
e
EC|
|
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The ion channels mentioned earlier are passive channels,
that is, they do not require an energy source for the transport
of ions. They facilitate the movement of ions down their
concentration gradients. Cells also contain active channels
which make use of energy provided by sources like ATP
(adnenosine triphosphate) to drive ions. One such active
channel is the sodium-potassium pump. This ion pump,
shown in Figure 2, exports three Na™ ions in exchange for
two K ions in every cycle of operation.

Adding a term for pump current and also setting /., = 0
since we are not applying any external current,
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IK + INa + ICl + Ipump = _Cmvm (2)
This equation needs to be satisfied by the currents and the
transmembrane potential at all times.

B. Ion Channel Currents

We make use of the energy barrier model (3a) proposed
in [17] to represent the various ionic currents in units of pA
(microamperes). The pump current model is also taken from
[17]. The currents are represented by the following set of
equations,

F
B(t) = V(D) 3)
Ik (3(t) = PKFzK([Kﬂ v~ [K],) &)
Ina((t)) = PyaFzna([Na™]ie?™ — [Na™],)  (5)
Iau((t)) = PczFZcz([Cl Joe?® — [CI7];) (6)
1 2.17[ATP]
um, (t) = at] (N
Lpumy 5 (1 + e
where,
Px(ecm3.s71) - the relative permeability of ion channel X,

F(Cmol™") - the Faraday’s constant,

zx - the number of valence electrons, zx = znyqe = 2c1 = 1,
R(Jmol=*K~1) - the gas constant,

T(K) - the absoulute temperature,

[ - the pump ratio,

[ATP](mM) - the concentration of ATP (time-dependent),
[X]:(mM) - the intracellular concentration of ion X,
[X]o(mM) - the extracellular concentration of ion X,
[X]e(mM) - the half-maximal occupation concentration.

IV. THE PROPOSED MODEL

We can simplify our set of equations by introducing the
permeability factors, a; = PxFzg, as = PnoFzn, and
az = PoyFzeq. Also let’s make the substitution k = 2.
Note that all these parameters are non-negative and bounded.
Equations (4), (5), (6) can now be re-written as follows,

Ik (Vi () = a ([K )iV — [KF],) ()
Ina(Vin(t)) = a2([NaT];¥ ") — [Nat],)  (9)
Ici(Vin () = a3([CL e —[C17];)  (10)

Substituting the current equation (8), (9) and (10) in
equation (2) gives the following,

. ekvm(t)
—Vm(t) = C (al[KJr]i + o [Na+]i + 043[017}0)
~ - (ealK 7o + as[Na*, + as[CI])
1
+ afpump(t) an

Let’s analyze the individual terms in the above equation.
Since it is known that the nanoparticles effect the potassium
channel permeability, we consider «; to be the controllable
parameter. The other permeability factors oo and as may
also be effected, but since we do not have experimental
evidence to justify this, we consider them fixed in our



model. In order to maintain normal operating conditions, a
cell maintains the intracellular concentrations [K+];, [Na™];
and [Cl~];. The extracellular concentrations [Kt],, [Na™],
and [Cl™],, can also be considered constant or slowly
varying compared to the dynamic changes in transmembrane
potential. Ion channel currents arise in order to keep these
ionic concentrations constant. Moreover, in order to maintain
stable chemical concentrations in the cell, the ion pump
current [, has to have a relatively steady value as well.
Hence, we can introduce the following constants,

1
a=—[K], (12)
Om[ ]
1
b= K*], 13
c, ) (19
1
c=5 (a2[Nat]; + a3[Cl7],) (14)
m
1
d = C’"L (a2 [Naﬂo + 043[Cl_]i — Ipump) (15)
The model in (11) now becomes,
Vm(t) = —(ala—i—c)ekv"”(t) +a1b+d (16)
Considering the state variable z(t) = e*¥(®)  with the

time derivative 2(t) = kz(t)V,,(t) and substituting equation

(16),
Z2=kz(—(cv1a+c)z + a1b+d)

V. STABILITY ANALYSIS

a7

The system in Equation (17) has two isolated equilibrium
points, zp; = 0 and,

atb+d
202 aa T o (18)
The equilibrium point zp; however leads to a resting
membrane potential V,,, = —oo which is not possible in

reality. Therefore we disregard this equilibrium point. For the
other equilibrium point zp2 we can reformulate the system
around this equilibrium point as,

19)

To analyze the stability of the system in (19) around this
equilibrium point, let’s consider the Lyapunov function [18]
V = %(z — 202)?, the time derivative of which gives V=
—kz(cra+c)(z — 202)%. Since a,c¢ > 0 and a; > 0 for cells
under normal conditions and z = ¢ > 0, we notice that
V <0forall z € R, and V =0 for z = zp2. Hence, the
equilibirum at z = zp9 is aymptotically stable.

Since zpp = e¥Vmr, the corresponding resting membrane

1 <011b + d
—In

potential is,
k aja+ c)

Equation (20) becomes equivalent to the well-known
Goldman Hodgkin Katz (GHK) equation for the resting
membrane potential [19] if we substitute (12), (13), (14) and
(15) back in (20) and remove the pump current term I, .
Although I,y is not available for control, its contribution
to the membrane potential becomes negligibly small when
the denominator in (20) is large enough, which is the case
under normal operating conditions. Hence, we can expect the
resting membrane potential obtained from this model not to

Z = —]ﬁZ(Oéla + C)(Z - Z02)

‘/m r =

(20)
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deviate much from the GHK equation for relatively large
values of the permeability factors oy, oo and as. For lower
values of the permeability factors however, the pump current
has important implications on the system. This will be shown
in the section to follow.

It should also be noted here that using the ionic current
model (3b) from [17] instead of (3a), results in a system
with an unstable equilibrium point. This does not agree
with reality since the cell membrane potential always rests
at a particular value. It is also important to note that the
membrane potential equation (8) in our previous work [16]
disagrees with the Hodgkin-Huxley model and also the
resting membrane potential provided by the associated model
disagrees with the GHK equation. Our new model manages
to overcome these limitations.

VI. BISTABILITY AND SIMULATION RESULTS

As evident from the expression in (18), the equilibrium
point zp2 and the corresponding resting membrane potential
Vo are dependent on the potassium permeability factor, o .
However, the variation in zgo with respect to oy exhibits
two opposing trends under different cellular conditions. The
cellular conditions here refer to the permeability factors
of the ion channels other than the potassium ion channel.
For the purpose of analysis, we assume that we have the
capability to set these permeability factors as desired. In
this section, we first provide the set of conditions which
characterize the two opposing scenarios and then we go on
to present them in simulation. We conclude this section by
comparing the simulation results with the experimental data.

A. Bistability of the Membrane Potential

Let’s consider dependence of zg2 on ay,
Ozo2  bc—ad
da;  (aqa+c)?
We see that the expression in (21) is negative if ad > bc,
causing an increase in zpz and hence depolarization if oy
is decreased. However, if ad < be, a decrease in «; would
rather cause hyperpolarization.

2L

B. Simulation Results

The two cases mentioned in the previous subsection can
be achieved by setting the permeability factors as and ag to
two different sets of desired values. This means we choose
c and d in (21) to have certain constant values. However,
the parameters a and b are independent of ay and ag and
hence cannot be set as desired. Fixing o, and a3, we vary oy
over a range of values. A decrease in o can be interpreted
as adding more nanoparticles to the cell. We simulate the
effect of these variations on the state variable z(t) and the
membrane potential V,,, (t).

We use the parameters, T’ 295.15K, R
8.314JK ~'mol~! and F = 96485Cmol~!. The values of
pump current Ip,m,m, = 15pA and membrane capacitance
C,, = 37pF have been chosen in accordance with the
measurements provided in [20]. The external and internal
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ionic concentrations are taken to be the ones provided in
[17], also mentioned on Figure 2.

To simulate the first scenario, we choose as = 2 x 10~7
and a3 = 2 x 107° such that ad > bc, and smoothly vary
a; in the interval [5 x 1077, 5 x 10~%]. Figure 4a shows
how the equilibrium point zpe varies with increase in aj.
We notice that as oy becomes small, zg2 increases, eventually
approaching % = 0.0513. Also, since V,,,, = %log(zog), Vinr
increases to —0.076V as a; decreases as shown in Figure
4b. To simulate the transients of z(¢) and V,,(t), we evolve
the two variables with time as shown in Figures 4c and 4d
respectively for a given «;. The red-solid curve corresponds
to ay=2 x 1077, the blue-dashed curve represents a= 1 X
1076, while the black dash-dotted curve is for a;;=2 x 1076.
Observing the plots reveals that z and V,, come to rest at
higher values (depolarized) if «; is decreased.

For the other case, we make ad < bc by setting aso
2 x 1078 and a3 = 2 x 107%. As in the previous case,
« is smoothly varied in the interval [5 X 1077, 5 x 1074].
The plots in Figure 5a and Figure 5b show the corresponding
effect on zp2 and V/,,,-. The plots for the trajectories of V,,, (t)
and z(t) for a;=2 x 10~7 (red-solid curve), a;= 1 x 1076
(blue-dashed curve), a;;=2 x 10~5(black dash-dotted curve)
are also provided in Figure 5d and 5c. Unlike the previous
case, it is observed that decreasing «; hyperpolarizes the cell
rather than depolarizing it.

C. Comparison with experimental results

In Section II, we presented experimental evidence con-
cluding that the addition of nanoparticles caused depolar-
ization of the cells. Further experimentation identified the
blocking of potassium ion channels by nanoparticles as a
cause of the observed depolarization.

From the previous subsection, we see that our simulation
results of the proposed model agree with the trends seen
in the experiments when ad > bc. The parameter oy
corresponds to the permeability of potassium ion channels
and an addition of nanoparticles causes it to decrease. The
simulation results for this case depict an increase in V,,, if
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o is decreased, in agreement with the experimental data. On
the other hand, if the cellular conditions are such that ad <
be, we see opposite trends as compared to the experiments.

In view of the presented simulation results, we conclude
that the transmembrane potential is bistable, exhibiting either
depolarization or hyperpolarization under a different set of
permeability factors. The hyperpolarization state, however,
is only achieved when the permeability factors become very
small. The work presented in [8] also indicates the possibilty
of a similar bistable behavior.

VII. EFFECT ON SODIUM AND CHLORIDE ION CHANNELS

Although experimental evidence suggests that nanoparti-
cles block the potassium ion channels, we can not ignore
the possible effect of adding nanoparticles on the sodium
and chloride ion channels. We analyze the effect on these
channels at the ionic concentrations provided in [17].

Expanding the expression for zpy in (18),

. Sa1 + 1459 + Tag — 15 X 10~12

22
140c1 + 10c2 + 150a3 22)
Computing the rate of change of zy2 with respect and aw

and as,

202

0202 2025001 + 21680cr3 + 15 X 10~ 23)
Oag (140c; + 10as + 150ai3)?

Ozo2 23001 — 21680a2 + 2 x 10~9 24)
Oaz (14001 4 1002 + 1500i3)?

Observing (24), we see that as long as the relation
21680a5 — 2301 > 2 x 1079 is obeyed, we can consider
the decrease in chloride ion permeability a3 as a possible
contributor to the depolarization seen in experiments. This
suggests that o must not be smaller than a particular limit
for a given . In other words, this suggests that the rate of
decrease of sodium ion permeability s with respect to the
number of added nanoparticles, should either be decreasing
with increasing nanoparticles or should remain negligibly
small for any number of nanoparticles.

On the other hand, examining (23) suggests that %f;j is
always positive, no matter what the values of the permeability




factors are. Hence, there is no scenario where we can con-
sider the blocking of sodium ion channels by nanoparticles
as a sole contributor to the depolarization effect. However
it is possible that the decrease in o due to addition of
nanoparticles is such that the hyperpolarization effect caused
by it is always smaller as compared to the depolarization
caused by a decrease in a; and a3 combined under the
satisfaction of the constraints mentioned earlier.

In a nutshell, analysis of the effect of individual perme-
ability changes on zp2 and the associated V,,, suggests that
in order to cause cellular depolarization, nanoparticles may
also block chloride ion channels apart from the potassium ion
channels. They may also block the sodium ion channels but
the effect is not as prominent as the other channels. Currently,
we have experimental evidence for the blocking of potassium
ion channels only. Further experimentation on the other ion
channels will be useful to test our theoretical hypothesis.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a simple dynamical system
to model the transmembrane potential of biological cells.
Our model allows the control of transmembrane potential
by manipulating the potassium channel permeability and is
shown to be stable as well. Experiments revealed that potas-
sium channel permeability is decreased by the introduction
of nanoparticles in the vicinity of the cell, causing depolar-
ization. Hence, decrease in this permeability in simulation
can be considered equivalent to adding more nanoparticles
into the cell. We simulate our model for a given set of
internal and external ionic concentrations and qualitatively
compare the simulation trends with the experimental results.
Our simulation shows the same depolarization trend for
decreasing the potassium channel permeability. However,
we also see opposing trends, that is, hyperpolarization of
the cell under another set of conditions. This indicates
a bistable behavior of the transmembrane potential. Also,
theoretical analysis of the proposed model points out the
possibility that nanoparticles block the sodium and chloride
ion channels as well. However the extent to which the sodium
and chloride ion channels are blocked may not be the same
as the potassium ion channels. The model presented can
be used to fit different types of cells and can enable us
to predict the potassium channel permeability required to
achieve a desired membrane potential. Nanoparticles can
then be introduced into the cell to produce the corresponding
desired permeability.

In order to find the amount of nanoparticles that should
be added to achieve this desired permeability, we also need
to model the dependence of ion channel permeability on the
amount of nanoparticles. Moreover, we have to account for
the effect of adding nanoparticles on the sodium and chloride
ion channels. In the future, we propose to add more states
to the system to incorporate these dynamics.
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