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Abstract— We provide a new adaptive controller for curve
tracking in the plane under unknown curvature. We prove a
global asymptotic stability theorem that ensures tracking of
the curve and convergence of the curvature estimate to the
unknown curvature. Our curvature identification result is an
improvement over the known adaptive curve tracking results,
which do not ensure parameter identification, or which identify
the control gain without identifying curvatures.
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I. INTRODUCTION

This paper continues our search (begun in [8], [9], and
[10]) for curve tracking methods that ensure stability under
uncertainties. As noted in [7] and [9], curve tracking is
important for navigating mobile robots; see, e.g., [11] for
feedback controls for wheeled mobile robots which track
obstacle boundaries, and [1], [2], and [3] for generalized
adaptive robot controllers for under-actuated autonomous
ships and other cases. For three dimensional cases and
cooperative control for ocean sensing, see [4], [12], and [14].

Our work [8] proved robustness of the two dimensional
curve tracking controls from [15] under polygonal state
constraints; see Section III. This provided theoretical support
for experimental evidence of robustness of curve tracking,
which had been observed in experiments in ocean sampling
[14], farming [6], obstacle avoidance in corridors [16], and
ship control [3]. A key method in [8] involved robust forward
invariance of closed sets H ⊆ R2, where the goal was to find
largest constants δH > 0 such that all trajectories starting in
H , for all uncertainties that are bounded by δH , remain in H
at all future times. This gave predictable tolerance and safety
bounds by viewing the planar workspace as a nested union
of forward invariant regions {Hi}, and proving input-to-state
stability (or ISS) of the dynamics on each set Hi.

Our curve tracking research was motivated by our deploy-
ment of marine robots that searched for oil pollution from the
2010 Deepwater Horizon oil spill disaster [13]. Robust for-
ward invariance can help ensure that curve tracking dynamics
respect constraints in marine robotic implementations, such
as no-collision constraints. Our experimental work tested our
curve tracking controls under different control gains, and [9]
extended [8] by proving ISS, robust forward invariance, and
adaptive tracking under unknown control gains, leading to a
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new adaptive control analysis that identified control gains.
However, [8]-[10] assume that the curvatures are known.

Therefore, we present a new adaptive controller for track-
ing curves. The significance of the present work is (a) our
new dynamical extension that identifies unknown curvatures,
(b) our proof of global asymptotic stability of the augmented
tracking and curvature identification dynamics, and (c) our
robust forward invariance approach to ensuring that the adap-
tively controlled dynamics respect certain state constraints.
While our state constraints are hexagons like in [8] and
[9], the analysis from [9] does not apply under unknown
curvatures. Although [1] covers more complex models than
ours (without identifying unknown model parameters), we
believe that by identifying curvatures and proving robust
forward invariance, our new work is valuable theory with the
potential for marine applications with unknown curvatures.

II. DEFINITIONS AND NOTATION

We use the standard classes of comparison functions K∞
and KL from [5, Chapter 4]. Take any subset G of a
Euclidean space and any point E ∈ G. We use the usual
definitions of positive and negative definiteness with respect
to E , and moduli and nonstrict and strict Lyapunov functions
with respect to (E ,G) [8]. Let |p|E = |p−E| be the distance
between any p ∈ G and E , in the usual Euclidean metric.

Let U be any subset of a Euclidean space such that 0 ∈ U .
Let |f |S denote the essential supremum of any function f
over any set S, and |f |∞ denote its essential supremum over
its entire domain. Take any forward complete system

ẋ = F(x, δ) (1)

with state space G and measurable essentially bounded
disturbances δ : [0,∞)→ U , where F(E , 0) = 0. Let S ⊆ G
be a neighborhood of E . The system is called input-to-state
stable (ISS) with respect to (U , E ,S) provided that there are
functions β ∈ KL and γ ∈ K∞ and a modulus Λ with
respect to (E ,S) such that

|x(t, x0, δ)|E ≤ β(Λ(x0), t) + γ(|δ|[0,t]) (2)

holds for all t ≥ 0 and all solutions x(t, x0, δ) of (1)
corresponding to all initial states x0 ∈ S and U-valued δ’s.
This agrees with the usual ISS condition when G = S = Rn,
E = 0, and Λ(x) = |x|. The special case where F only
depends on x and γ(|δ|[0,t]) in (2) is not present is global
asymptotic stable (GAS) with respect to (E ,S). A set H ⊆ G
is robustly forwardly invariant for (1) with disturbances
valued in U provided all trajectories of (1), with initial states
in H and disturbances δ valued in U , remain in H for all
t ≥ 0, i.e., x(t,H, δ) ⊆ H for all t ≥ 0 and U-valued δ’s.

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8681-4/$31.00 ©2016 AACC 1608



III. REVIEW OF MODEL AND NONADAPTIVE CASES

We review the curve tracking model and the relevant
results from [8], which are needed for later sections. As noted
in [8], the curve tracking dynamics can be simplified to

ρ̇ = − sin(φ), φ̇ = κ cos(φ)
1+κρ − u0 + ∆ (3)

where ρ is the distance between the robot and the curve being
tracked, φ is the bearing, κ is the curvature at the closest
point on the curve, u0 is the steering control, the real valued
essentially bounded function ∆ represents uncertainty, and
the state space is X = (0,∞)× (−π/2, π/2).

The work [15] designed a control to achieve asymptotic
stabilization of an equilibrium (ρ, φ) = (ρ0, 0) corresponding
to a constant distance and zero bearing, which occurs when
the robot moves parallel to the curve. Since κ in [8] and [15]
was assumed to be known, they used a control of the form

u0 = κ cos(φ)
1+κρ − h

′(ρ) cos(φ) + µ sin(φ) (4)

where µ > 0 is a steering constant. In [8], we assumed:
Assumption 1: The function h : (0,∞) → [0,∞) is

C2, h′ has only finitely many zeros, limρ→0+ h(ρ) =
limρ→∞ h(ρ) = ∞, and there is a constant ρ0 > 0 such
that h(ρ0) = 0. Also,

(a) There is a nondecreasing C1 function γ : [0,∞)→
[µ,∞) such that γ(h(ρ)) ≥ 1+0.5µ2+h′′(ρ) holds
for all ρ > 0.

(b) There is a function Γ ∈ K∞ ∩ C1 such that
Γ(h(ρ)) ≥ [h′(ρ)]2 for all ρ > 0.

(c) h′(ρ)(ρ− ρ0) is positive for all ρ > 0 except ρ =
ρ0, and h′′(ρ0) > 0. �

For instance, [8] shows that Assumption 1 holds for

h(ρ) = α
(
ρ+

ρ20
ρ − 2ρ0

)
,

γ(q) = 2
α2ρ40

(q + 2αρ0)3 + 1 + 0.5µ2 + µ and

Γ(q) = 18α
ρ0
q +

(
2
ρ0

)4 (
9
α2

)
q4

(5)

for any constants α > 0 and ρ0 > 0. Also, for any constant
L > 0, [8] shows that the dynamics

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ), (6)

obtained by substituting (4) into (3) and setting ∆ = 0,
admits the strict Lyapunov function

U(ρ, φ) = −h′(ρ) sin(φ) + 1
µ

∫ V (ρ,φ)

0
γ(m)dm

+LΓ(V (ρ, φ)) + 1
2LV (ρ, φ)

(7)

with respect to ((ρ0, 0),X ), where γ and Γ are from As-
sumption 1 and V is the nonstrict Lyapunov function

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (8)

for (6) with respect to ((ρ0, 0),X ). The function (8) was used
in [15] with LaSalle Invariance to prove global asymptotic
stability of (ρ0, 0). In fact, V̇ = −µ sin2(φ)/ cos(φ) holds
along all solutions of (6) on our state space X , which is a
nonstrict Lyapunov function decay condition since V̇ is zero
at certain points outside the equilibrium (ρ0, 0).

Fig. 1. Hexagon H(ρ∗, µ,K)

Our work [8] proves that along all trajectories of (6) in
X , the function (7) satisfies U ≥ V and

U̇ ≤ − 0.5[h′(ρ) cos(φ)]2 − sin2(φ) , (9)

so the right side of (9) is negative definite with respect to
(ρ0, 0) on X . The strict Lyapunov function decay condition
(9) allowed us to prove ISS of the perturbed dynamics

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + ∆, (10)

under suitable restrictions on |∆|∞, assuming that the cur-
vature κ is a known positive constant.

The work [8] also gives this method for building robustly
forwardly invariant sets. Given any constants ρ∗ ∈ (0, ρ0/2)
and K > 1, let µ ∈ (0, π/(2ρ∗)) be any constant such that

µ tan(µρ∗) > max
{
|h′(ρ)| : ρ∗ ≤ ρ ≤ ρ∗ +Kρ0

}
, (11)

and H(ρ∗, µ,K) ⊆ R2 be the closed region that is bounded
by the hexagon that has the vertices A = (ρ∗, 0)>, B =
(2ρ∗, µρ∗)

>, C = (ρ∗ +Kρ0, µρ∗)
>, D = (ρ∗ +Kρ0, 0)>,

E = (Kρ0,−µρ∗)>, and F = (ρ∗,−µρ∗)>. Then for each
compact set D ⊆ X , we can choose ρ∗, µ, and K such that
D ⊆ H(ρ∗, µ,K); see Fig. 1. Set ∆∗ = min{|h′(ρ) cos(φ)| :
(ρ, φ)> ∈ AB ∪ ED} and ∆∗∗ = min{|h′(ρ) cos(φ) −
µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}. Then

min{∆∗,∆∗∗} > 0, (12)

by (11) and Assumption 1, and [8] and [9] prove:
Lemma 1: Let Assumption 1 hold, ρ∗ ∈ (0, ρ0/2) and

K > 1 and L > 0 be any constants, and µ ∈ (0, π/(2ρ∗)) be
any constant satisfying (11). Then the following hold: (a) For
any constant ∆̄ ∈ (0,min{∆∗,∆∗∗}), the set H(ρ∗, µ,K) is
robustly forwardly invariant for (10) with disturbances valued
in U = [−∆̄, ∆̄]. (b) For each constant ∆̃ > min{∆∗,∆∗∗},
we can find a point p̃ on the boundary of H(ρ∗, µ,K) such
that the trajectory of (10) starting at p̃ for one of the constant
perturbations ∆ = ±∆̃ exits the hexagon. (c) There is a
constant v0 > 0 such that the function (7) satisfies U(ρ, φ) ≥
v0|(ρ− ρ0, φ)|2 for all (ρ, φ) ∈ H(ρ∗, µ,K). �

The preceding lemma implies that min{∆∗,∆∗∗} is the
maximal allowable perturbation bound for maintaining robust
forward invariance of H(ρ∗, µ,K). We also use the follow-
ing, whose proof consists of Step 3 of [9, Appendix B], and
differs from a standard sufficient condition for ISS because
its Lyapunov decay condition is of integral ISS type:
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Lemma 2: Let X ] be a bounded robustly forwardly invari-
ant set for some dynamics of the form (1) with disturbances
δ : [0,∞) → [−δ∗, δ∗] that are bounded by a constant
δ∗ > 0, where F(0, 0) = 0. Let V ] : O → [0,∞) be C1 on
some open setO containing X ] and admit a constant v > 0, a
continuous positive definite function α0 : [0,∞)→ [0,∞), a
function γ̄ ∈ K∞, and a modulus Λ with respect to (0,X ])
such that V̇ ] ≤ −α0(V ]) + γ̄(|δ|) and v|x|2 ≤ V ](x) ≤
Λ(x) hold along all trajectories of (1) starting in X ] for
all measurable disturbances δ : [0,∞) → [−δ∗, δ∗]. Then,
we can construct functions β] ∈ KL and γ] ∈ K∞ such
that |x(t)| ≤ β](Λ(x(0)), t) + γ](|δ|[0,t]) holds along all
trajectories of (1) starting in X ] for all choices of δ, so (1)
is ISS with respect to ([−δ∗, δ∗], 0,X ]). �

IV. MAIN ADAPTIVE CONTROL AND TRACKING RESULT

A. Statement of Result

We now leverage the results from the preceding section,
to study the two dimensional curve tracking dynamics

ρ̇ = − sinφ, φ̇ = κ cosφ
1+κρ − u2 (13)

with unknown constant curvatures κ (but see Section V for
extensions with disturbances and nonconstant curvatures).
The control u2 in (13) will differ from the control u0 from
(4), since we will no longer assume that the curvature κ is
available for use in the control. This produces completely
different adaptive control problems from the ones in [9] and
[10], which covered known curvatures. By writing

κ
1+κρ =

κ
1+κρ0

1+ κ
1+κρ0

(ρ−ρ0) = κ0

1+κ0(ρ−ρ0) (14)

for our desired constant distance ρ0 > 0, where κ0 = κ/(1+
κρ0), we will rescale κ to replace κ/(1 + κρ) by κ0/(1 +
κ0(ρ− ρ0)) in (13) and so also in what follows; see Section
V for motivation for the transformation (14).

Even though κ0 is unknown, we assume that we know
constants c and c̄ such that κ0 ∈ (c, c̄), and that κ0 > 0.
We also assume that Assumption 1 holds. Using the strict
Lyapunov function (7), we use the estimator

˙̂κ0 = (κ̂0 − c)(c̄− κ̂0) cos(φ)
(1+(ρ−ρ0)κ̂0)2

∂U
∂φ (ρ, φ) (15)

for the unknown scaled curvature κ0. This is valid, because
our choice of U in (7) does not depend on κ. Later we
specify our state spaces in such a way that 1 + (ρ − ρ0)κ̂0

and 1 + (ρ− ρ0)κ0 stay positive. We also use the controller

u2 = κ̂0 cos(φ)
1+κ̂0(ρ−ρ0) − h

′(ρ) cos(φ) + µ sin(φ) (16)

where h satisfies Assumption 1, so h′′(ρ0) > 0.
Then, after applying (14) to (13) and taking a common

denominator, we conclude that the closed loop dynamics for
(q̃, κ̃0) = (q̃1, q̃2, κ̃0) = (ρ− ρ0, φ, κ̂0 − κ0) are

˙̃q1 = − sin(q̃2)
˙̃q2 = h′(q̃1 + ρ0) cos(q̃2)− µ sin(q̃2)

− κ̃0 cos(φ)
(1+κ0(ρ−ρ0))(1+(κ0+κ̃0)(ρ−ρ0))

˙̃κ0 = (κ0+κ̃0−c)(c̄−κ0−κ̃0)
(1+(ρ−ρ0)κ̂0)2 cos(q̃2)∂U∂φ (ρ, φ).

(17)

To specify the state constraint set for (17), fix any one of the
compact robustly forwardly invariant sets S = H(ρ∗, µ,K)
from the previous section for the dynamics (10), and any
constant ∆̄ ∈ (0,min{∆∗,∆∗∗}), where min{∆∗,∆∗∗} is
the perturbation bound from Lemma 1 for S.

Finally, choosing any functions γ and Γ that satisfy
Assumption 1 and any constant L > 0, and defining V by
(8), we fix any positive constants M̄1 and M̄2 such that

M̄1 ≥ 1
µγ(V (ρ, φ)) + LΓ′(V (ρ, φ)) + 1

2L and

M̄2 ≥ ρ−ρ0
h′(ρ) max

{
1, ρ−ρ0

h′(ρ) cos2(φ)

} (18)

hold for all (ρ, φ) ∈ S such that ρ 6= ρ0. These constants
exist by the continuity of V on the compact set S, the
continuity of γ and Γ′, and the facts that µρ∗ < π/2
and h′′(ρ0) > 0, combined with L’Hopital’s Rule to bound
(ρ− ρ0)/h′(ρ). Our main result is:

Theorem 1: Let S, ∆̄, ρ0, h, U , M̄1, and M̄2 satisfy the
above requirements and the constants c ≥ 0 and c̄ > c satisfy

c̄ < c+ min

{
∆̄
4 ,

1

2
√
M̄1

, 1

2
√

2M̄2(2+M̄1)

}
(19)

and c̄ < 1
2(ρ0−ρ∗) . (20)

Then, (17) is GAS with respect to (0,S]) where S] =
{(q̃, κ̃0) : q̃ + (ρ0, 0) ∈ S, κ̃0 + κ0 ∈ (c, c̄)}. �

B. Key Forward Invariance Lemma

To prove Theorem 1, we first prove:
Lemma 3: Let the assumptions of Theorem 1 hold. Then

for each initial state (q̃(0), κ̃0(0)) ∈ S] for (17), the solution
(q̃(t), κ̃0(t)) = (ρ(t)−ρ0, φ(t), κ̂0(t)−κ0) for (17) satisfies

min {1 + κ0q̃1(t), 1 + (κ0 + κ̃0(t))q̃1(t)} ≥ 1
2 (21)

for all t ≥ 0 and (q̃(t), κ̃(t)) ∈ S] for all t ≥ 0. �
Proof: First note that we can find a rectangle

[ρmin, ρmax] × [φmin, φmax] ⊆ (0,∞) × (−π/2, π/2) such
that S ⊆ (ρmin, ρmax)× (φmin, φmax) and such that

c̄ < 1
2(ρ0−ρmin) (22)

holds. This follows by choosing ρmin < ρ∗ close enough to
ρ∗, using the strictness of inequality (20).

We next check that for all ρ ∈ [ρmin, ρmax] and r ∈ [c, c̄],
we have

1 + r(ρ− ρ0) ≥ 1
2 . (23)

This will give (21), after we show that (q̃(t), κ̃(t)) ∈ S] for
all t ≥ 0 when (q̃(0), κ̃(0)) ∈ S]. There are two cases. Case
1: If ρ−ρ0 ≥ 0, then 1+r(ρ−ρ0) ≥ 1, since r ≥ c ≥ 0. Case
2: If ρ−ρ0 < 0, then (22) gives r(ρ−ρ0) ≥ r(ρmin−ρ0) ≥
c̄(ρmin − ρ0) > −1/2, since ρmin < ρ0. Hence, (23) holds.

Next, consider any initial state (q̃(0), κ̃0(0)) ∈ S]. The
existence of the unique S]-valued maximal solution of (17)
starting at (q̃(0), κ̃0(0)) on some maximal interval of the
form [0, tmax) follows from the local Lipschitzness of the
right side of (17), since the denominators in (17) are positive
at t = 0. Also, (19) gives |κ̃0(t)| ≤ c̄ − c < ∆̄/4, so (23)
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(with r = κ0 and then r = κ̂0 and ρ depending on t) gives∣∣∣ κ̃0(t) cos(φ(t))
(1+κ0(ρ(t)−ρ0))(1+(κ0+κ̃0(t))(ρ(t)−ρ0))

∣∣∣ < ∆̄ (24)

for all times t at which (ρ(t), φ(t)) ∈ [ρmin, ρmax] ×
[φmin, φmax] and κ̂0(t) ∈ (c, c̄). Suppose that (q̃(t), κ̃0(t))
did not stay in S], for the sake of obtaining a contradiction. In
that case, there is a maximal time t∗ such that (q̃(r), κ̃0(r)) ∈
S] for all r ∈ [0, t∗]. Moreover, (ρ(t∗), φ(t∗)) is at the
boundary ∂S of S, because a uniqueness of solutions ar-
gument (which is analogous to [9, Footnote 2]) ensures that
κ̃0(t) cannot reach −κ0 +c or −κ0 + c̄, so κ̂0 stays in (c, c̄).

Since the maximal solution is defined on a half open
interval of the form [0, tmax) and S ⊆ (ρmin, ρmax) ×
(φmin, φmax) is compact, there is a constant ε > 0 such
that the function ψ : [0, ε] → R3 defined by ψ(t) =
(ψ1(t), ψ2(t), ψ3(t)) = (q̃(t∗ + t), κ̃0(t∗ + t)) is such
that (ψ1(t) + ρ0, ψ2(t)) starts in ∂S, takes all values in
[ρmin, ρmax]× [φmin, φmax], and solves (10) on [0, ε] with

∆(t) = − κ̃0(t∗+t) cos(ψ2(t))
(1+κ0ψ1(t))(1+(κ0+κ̃0(t∗+t))ψ1(t))

and maxt∈[0,ε] |∆(t)| < ∆̄, by (24). This ε exists, by the
continuity of (q̃, κ̃0). Since ∆̄ is a perturbation bound for
maintaining forward invariance of S and ψ(t) starts in S], ψ
stays in S] on [0, ε]. Hence, (q̃, κ̃0) stays in S] on [0, t∗+ε].
This contradicts the maximality of t∗, so Lemma 3 holds.

C. Stability Analysis and Curvature Identification

Recall that along all trajectories of (10) in S, the function
U satisfies the strict decay condition (9), when ∆ = 0.
Hence, since κ̂0 = κ̃0 + κ0 stays in (c, c̄), the function

U ](ρ, φ, κ̃0) = U(ρ, φ) +
∫ κ̃0

0
`

(`+κ0−c)(c̄−`−κ0)d` (25)

satisfies

U̇ ] ≤ − 1
2 (h′(ρ) cos(φ))2 − sin2(φ)

+
{
∂U
∂φ (ρ, φ)

cos(φ)(−κ̃2
0)(ρ−ρ0)

(1+κ̂0(ρ−ρ0))2(1+κ0(ρ−ρ0))

}
.

(26)

along all trajectories of (17) in its forwardly invariant set
S]. By (18) and the facts that (ρ(t), φ(t)) stays in S and
∂V
∂φ (ρ, φ) = tan(φ) on S, our choice (7) of U gives∣∣∣∂U∂φ (ρ, φ)

∣∣∣ ≤ ∣∣∣−h′(ρ) cos(φ) +
(

1
µγ(V (ρ, φ))

+LΓ′(V (ρ, φ)) + 1
2L

)
tan(φ)

∣∣
≤

∣∣h′(ρ) cos(φ)
∣∣+ M̄1

∣∣ tan(φ)
∣∣ (27)

on our robustly forwardly invariant set S.
Hence, we can use our choice of M̄2, our lower bound

(21), the relation 1/(.5)3 = 8, and the triangle inequality to
upper bound the quantity in curly braces in (26) by

8κ̃2
0

(
|h′(ρ)(ρ−ρ0)| cos2(φ) + M̄1| sin(φ)(ρ−ρ0)|

)
≤ 8κ̃2

0

(
|h′(ρ)(ρ− ρ0)| cos2(φ) + M̄1

2 sin2(φ)

+ M̄1

2 (ρ− ρ0)2
)

≤ 8κ̃2
0

(
M̄2(h′(ρ) cos(φ))2 + M̄1

2 sin2(φ)

+ M̄1

2 M̄2(h′(ρ) cos(φ))2
)
.

(28)

Also, |κ̃0| is bounded by c̄− c, and (19) implies that

8(c̄− c)2M̄2(1 + 0.5M̄1) < 1
2 and

8(c̄− c)2(M̄1/2) < 1.
(29)

Then (26) and (28) give a constant β0 > 0 such that

U̇ ] ≤ − 1
2 (h′(ρ) cos(φ))2 − sin2(φ)

+ 8(c̄−c)2
(
M̄2

(
1 + M̄1

2

)
(h′(ρ) cos(φ))2

+M̄1

2 sin2(φ)
)

≤ −β0

(
(h′(ρ) cos(φ))2 + sin2(φ)

) (30)

along all trajectories of (17) in S].
We next convert U ] into a strict Lyapunov function V ] for

(17) with respect to (0,S]), having the form

V ](q̃, κ̃0) = M̄3U
](ρ, φ, κ̃0) + q̃2κ̃0 (31)

for a suitable constant M̄3 > 0. We first pick a constant
Ḡ1 > 0 such that∣∣∣ ˙̃κ0

∣∣∣ ≤ Ḡ1 |q̃| and U ](ρ, φ, κ̃0) ≥ |(q̃,κ̃0)|2
Ḡ1

(32)

hold on S]. The constant Ḡ1 exists because of part (c) of
Lemma 1, combined with (21) and (27). Then we can use
(21), (32), the fact that h′(ρ0) = 0, and the bounds |κ̃0(t)| ≤
c̄ − c and cos(φ) ≥ cos(µρ∗) > 0 to find constants Ḡ2 > 0
and Ḡ3 > 0 such that on S], we have
d
dt (q̃2κ̃0) ≤

(
h′(q̃1 + ρ0) cos(q̃2)− µ sin(q̃2)

− κ̃0 cos(φ)
(1+κ0(ρ−ρ0))(1+κ̂0(ρ−ρ0))

)
κ̃0

+ Ḡ1|q̃|2

≤ Ḡ2

(
|κ̃0||q̃|+ |q̃|2

)
− Ḡ3κ̃

2
0

≤ Ḡ2

(
Ḡ2
2Ḡ3
|q̃|2 + Ḡ3

2Ḡ2
κ̃2

0 + |q̃|2
)
− Ḡ3κ̃

2
0

= Ḡ2

(
Ḡ2
2Ḡ3

+ 1
)
|q̃|2 − 1

2 Ḡ3κ̃
2
0.

(33)

We can also find a constant c0 > 0 such that
β0(
(
h′(ρ) cos(φ))2 + sin2(φ)

)
≥ c0|q̃|2, and so also U̇ ] ≤

−c0|q̃|2 on S], using (30), L’Hopital’s rule, and the facts that
h′′(ρ0) > 0 and cos(φ) ≥ cos(µρ∗) > 0. Hence, the choice

M̄3 = 1 + Ḡ1 + 1
c0
Ḡ2

(
Ḡ2
2Ḡ3

+ 1
)

(34)

implies that on S], we have

V̇ ](q̃, κ̃0) ≤ −M̄3c0|q̃|2 + d
dt (q̃2κ̃0)

≤ −c0|q̃|2 − Ḡ2

(
Ḡ2
2Ḡ3

+ 1
)
|q̃|2 + d

dt (q̃2κ̃0)

≤ −v|(q̃, κ̃0)|2 and

V ](q̃, κ̃0) ≥ M̄3|(q̃, κ̃0)|2/Ḡ1 − 0.5|q̃|2 − 0.5κ̃2
0

≥ v|(q̃, κ̃0)|2,
(35)

where v = min{c0, Ḡ3/2, 1/2}, by (31)-(33).
Also, the following variant of an argument from Appendix

B in [9] provides a positive definite function α0 such that

α0

(
V ](q̃, κ̃0)

)
≤ v|(q̃, κ̃0)|2 for all (q̃, κ̃0) ∈ S]. (36)

First choose any constant ε ∈ (0, 0.5 min{c̄ − κ0, κ0 − c}).
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Then (i) there is a function α1 ∈ K∞ such that V ](q̃, κ̃0) ≤
α1(|(q̃, κ̃0)|) for all (q̃, κ̃0) ∈ S] such that κ̃0 ∈ [c − κ0 +
ε, c̄ − κ0 − ε] and (ii) there is a constant c1 > 0 such that
c1 ≤ v|(q̃, κ̃0)|2 for all other points (q̃, κ̃0) ∈ S]. Hence, by
separately considering the cases (i) and (ii), we conclude that
(36) holds with α0(r) = min{c1, v[α−1

1 (r)]2}. This gives

V̇ ](q̃, κ̃0) ≤ −α0(V ](q̃, κ̃0)) (37)

along all trajectories of the (17) in S]. Hence, Theorem 1
follows from (35), (37), and Lemma 2 with δ = 0.

V. DISCUSSION ON ASSUMPTIONS AND EXTENSIONS

Theorem 1 applies when κ0 in (17) lies in (c, c̄), for any
constants c ≥ 0 and c̄ > c satisfying (19)-(20). However, our
derivation of (17) was based on rescaling the curvature. The
rescaling was used to introduce the ρ− ρ0 terms in (28). In
terms of the curvature parameter κ from the original model
(13), our bound requirements are c < κ/(1 + κρ0) < c̄.

In robotics, curve tracking is usually done for straight lines
or circles, or for curves whose curvatures change slowly
relative to the convergence speed of the robot and so can be
regarded as constant. However, we can generalize our results
to allow nonconstant curvatures, as follows. Assume that the
unknown curvature is some function κ](s) = κ+η(s) of the
curve length s for some constant κ > 0, and that we know a
constant δ̄ ∈ (0, κ) such that sups |η(s)| ≤ δ̄. Then replacing
κ by κ](s) in (13) produces

ρ̇ = − sinφ, φ̇ = κ cosφ
1+κρ − u2 + δ (38)

with the unknown constant nominal curvature κ ≥ 0, where

δ = cos(φ)η(s)
(1+(κ+η(s))ρ)(1+κρ) (39)

is bounded by δ̄. Then we can also prove ISS properties.
To prove this generalization, we replace the bound c̄ <

c + ∆̄/4 from (19) by c̄ < c + (∆̄ − δ̄)/4 (which requires
that δ̄ < ∆̄), and then argue as before (except with Lemma
3 generalized to a robust forward invariance result for a
perturbed version of (17)) to conclude that the perturbed aug-
mented tracking and curvature identification dynamics satisfy
ISS with respect to ([−δ̄, δ̄], 0,S]) and the perturbation δ(t),
where S] is from Theorem 1. This follows from the ISS
conclusion of Lemma 2 and the strict decay condition on U .

Also, Theorem 1 remains true if we fix any constant λ ∈
(0, 1) and replace (19)-(20) by

c̄ < c+ min
{
λ2∆̄,

√
2λ3

M̄1
,
√

λ3

M̄2(2+M̄1)

}
(40)

and c̄ < 1−λ
ρ0−ρ∗ , (41)

by replacing the lower bound in (21) by λ, and replacing
the 8’s in (28)-(29) by λ−3. Also, we can satisfy our
requirements using h(ρ) = α(ρ − ρ0)2 for any constant
α > 0, by only requiring the conditions from Assumption 1
for all ρ ∈ [ρ∗, ρ∗ +Kρ0], since this still gives (9) on S.

For example, if we take h(ρ) = (ρ − ρ0)2, ρ0 = 1,
ρ∗ = 0.25, K = 5/4, L = 0.4, and µ ∈ (0, π) close
enough to π, then the ρ values occurring for points in S are

in [0.25, 1.5], the φ values occurring in S are in [−π/4, π/4],
and we can choose the constant function γ(`) = 7.9, Γ(`) =
4`, M̄1 = 5.4, M̄2 = 0.5, ∆∗ = 0.4, ∆∗∗ = 1.3, and
∆̄ = 0.4 to satisfy the requirements from Assumption 1 and
the required lower bounds (18). Then, taking λ = 7/8 lets
us satisfy (40)-(41) with c = 0 and an upper bound c̄ ≈ 0.2.

VI. CONCLUSIONS

Adaptive planar curve tracking under unknown curvatures
is important for the control of marine robots. While our
works [9] and [10] solve adaptive tracking and parameter
identification problems under unknown control gains, here
we solved a complementary problem, where the control gains
are known but where our adaptive controller can identify
unknown curvatures. Our strict Lyapunov function allows
us to cover nonconstant curvatures, and our robust forward
invariance approach lets us satisfy certain state constraints.
In future work, we hope to apply our new curvature identi-
fication method in field work with marine robots.
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