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Abstract— A balance between adaptiveness and consistency is
desired for a robot to select control laws to generate reactions
to human movements. Two existing algorithms, the weighted
majority algorithm and the online Winnow algorithm, are
biased for either strong adaptiveness or strong consistency. The
dual expert algorithm (DEA), proposed in this paper, is able
to achieve a tradeoff between consistency and adaptiveness.
We give theoretical analysis to rigorously characterize the
performance of DEA. Both simulation results and experimental
data are demonstrated to confirm that DEA enables a robot to
learn the preferred control law to pass a human subject in a
hallway setting.

I. INTRODUCTION

As robots move away from the factory floor they encounter
environments that are no longer well structured in time or
space. This provides motivation for them to be equipped with
real time algorithms that tolerate and adapt to noise. These
challenges are compounded when humans come in close
contact with a robot [1], [2], where robots should behave
in predictable ways [3], [4]. Thus any choice of action that
a robot makes should occur in real time, while maintaining
a balance between adaptiveness and consistency.

Fig. 1. How Learning Algorithms Work

Typically a learning algorithm interacts with a concept,
which maps parameters to an output. An algorithm uses
observed parameters to make a selection of a control law.
Then when the expected output is known it will be compared
to the actual output from the system. If these outputs match
then we say that the selection is correct, otherwise an error
occurs, and the estimation of concept is updated. The online
learning method handles each parameter-output pair and
update sequentially and only uses each pair once, hence
only requiring limited memory and processing time [5].
This makes online learning ideal for implementation on
robotic systems. This paper deals with learning algorithms
that choose between two control laws, with the assumption
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that there are only two possible expected outputs. The output
value chosen more often for given parameters is called a
preference, while the other output value is called a deviation.

The particular online learning method we are examining
is ensemble learning [6], [5]. A notable example of online
ensemble learning is the weighted majority algorithm [7].
This algorithm can be used to take the Winnow Algorithm [8]
online [9]. It also has inspired popular boosting algorithms
such as AdaBoost [10] and its derivative Brown Boost [11].

These online ensemble methods can encounter drift, which
is a change in the concept, e.g. mapping from parameters
to outputs, over time [12]. Multiple online methods have
been implemented to adapt to drift, including the Dynamic
Weighted Majority where new experts are added and deleted
over time [13]. Other methods for tracking drift include using
regret minimization [14], and tracking the average of online
parameter-output pairs [15].

These methods can also encounter uncertainty in the
concept. Robustness measures how well the selection can
tolerate this uncertainty, and has been considered for online
learning methods [7], [9]. The novel approach of this paper is
to analyze a specialized form of robustness, the consistency, a
measure of how easily the selection changes when deviating
outputs are observed. Consistency is important for a learning
algorithm to meet predictability requirements for easy human
robot interaction [3], and prevent chatter in motion.

The goal of this paper is not to create an algorithm that
is the most adaptive or the most consistent, but rather an
algorithm that can manage the tradeoff between the two. A
learning algorithm called the dual expert algorithm (DEA)
is developed to select between two possible control laws.
We show that the DEA has bounded errors in selection,
increasing consistency as the number of data points increases,
while retaining its abilitiveness. We compare the DEA with
two similar algorithms (weighted majority algorithm (WMA)
[7] and the online Winnow algorithm [9]). The DEA and the
consistency analysis are novel contributions of this paper.

We justify the conclusion and demonstrate real life appli-
cations in HRI by implementing the algorithm onto a moving
robot avoiding a known user approaching it in the hallway.
Existing methods to solve this problem have the robot stop
[16] or treat humans as obstacles in path planing [17], [18],
[19]. Our method considers that humans tend to pass on a
predetermined side [20], [21] with parameters that are similar
in passing robots and humans [22] to allow avoidance in a
socially aware manor without large path planing costs.

The layout of this paper is as follows. Section II presents
the problem formulation. Section III explains the Dual Expert
Algorithm and section IV introduces the Expanded Dual
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Expert Algorithm. Section V shows the simulation results
of both algorithms. Section VI presents the results of the
experiment, and Section VII presents the conclusion.

II. BACKGROUND

In the general case the weighted majority algorithm
(WMA) [7] and the Winnow algorithm [8], [9] use an
arbitrary number of experts to select between two different
control laws. Each expert takes in the parameters of the
system and uses them to make their selection. The weight
of the experts that select each control law are then summed
and then the control law with the highest weight is chosen.

In the case without parameters, two experts, one for each
control law, are all that are needed. Then in the case of an
error, the chosen weight is decreased by a factor of two. The
Winnow is very similar to the WMA but a correct response
also results in the weight increasing by a factor of two.

Both WMA and Winnow have bounded error [7], [8]. In
addition their consistency is determined by how often the
algorithm will switch its selection. And their adaptiveness is
determined by how quickly the selection changes after the
preference changes. WMA is able to adapt easily to drift,
however it is not consistent, since one deviation is enough
to cause it to switch its selection. The additional doubling
of weights allows Winnow to be consistent but at the cost
of its adaptiveness, since now a switch in selection can only
be caused when there are an equal number of deviations as
there are of the preferred output.

The problem that we wish to solve is to create an algorithm
that is more consistent than the WMA, and more adaptive
than the Winnow. It has bounded error like both the WMA
and Winnow while maintaining a balance between consis-
tency and adaptiveness.

III. DUAL EXPERT ALGORITHM

The Dual Expert Algorithm (DEA) is shown in Algorithm
1. The key difference from WMA and Winnow is in line 12.
When a correct selection is made and the weight is over
0.25 the weight is increased by taking its square root, which
keeps the value Wa ≤ 1. This bound allows for the DEA to
maintain a balance between consistency and adaptiveness.

A. Performance Analysis

Suppose the algorithm has learned the preference of C. Let
δ be the number of iterations when C disobeys its preferred
option and makes a “deviation”. Let the total number of
iterations be N, we require that δ < N

2 −1.
A deviation will trigger the algorithm to make a “wrong”

selection based on its past knowledge. Then the following
claim can be made about the selection error.

Proposition 3.1: The maximum number of selection er-
rors that Algorithm 1 generates is 1+2δ .

Proof: Let Wp be the weight of the preferred option of
C, and let Wd be the weight of the deviation option. When
Wp
Wd

> 1 the preferred selection is chosen. When Wp
Wd

< 1 the

deviation is chosen. And when Wp
Wd

= 1, which is the starting
condition, a random choice is made.

Algorithm 1 Dual Expert Algorithm
1: Set W1 =W2 = 0.5
2: Choose selection a from argmax(W1,W2)
3: if W1 =W2 then
4: Choose a randomly from {1, 2} with equal probability
5: end if
6: if Error then
7: Wa =

Wa
2

8: else if Correct then
9: if Wa ≤ 0.25 then

10: Wa = 2Wa
11: else
12: Wa =

√
Wa

13: end if
14: end if

When Wp
Wd
≥ 1 a deviation can cause an error, leading to

a total of δ possible errors. Each deviation can decrease the
ratio Wp

Wd
by at most a factor of 2. Since the ratio starts at 1

the minimum that the ratio can ever be is 2−δ . Thus to return
this ratio back to 1 it must be increased by a factor of 2δ .
This requires there are δ times that the preferred selection
is chosen by C while Wp

Wd
< 1. Hence the algorithm can make

at most δ additional selection errors when Wp
Wd

< 1.

Therefore after considering all deviations, Wp
Wd
≥ 1. And

since the deviation can be chosen when Wp
Wd

= 1, but this

error will then raise Wp
Wd

> 1, there can be at most 1 additional
error. Thus the total number of errors is less than δ +δ +1.
Making the error bound of algorithm 1 as E = 1+2δ .

The error bound 1+2δ is on the same order of magnitude
as the Weighted Majority Algorithm which has an error
bound of E = 2.4+2.4δ [7].

B. Consistency Analysis

We show that the selection of the DEA is consistent
to deviations made by C. This means that the number of
switches between selections of the algorithm are kept small,
by ignoring deviations. We say the DEA becomes more
consistent as the number of iterations increases the ability
of the algorithm to ignore deviations increases.

For comparison, consider the weighted majority algorithm,
the two weights will always be within a factor of two from
each other. This is because the weights start even, and the
only modification to weights that can be done is decreasing
the current maximum by a factor of two.

Thus if C makes a deviation, then the weighted majority
algorithm will change the weights to be equal because the
larger weight will be reduced by half. The maximum number
of switchings an algorithm can make is 2δ where δ is the
number of deviations C makes. No deviation is ignored.

Next we will argue that using the dual expert algorithm,
the algorithm will make less switchings in its selection
because it can ignore deviations made by C. Let us define R=
max{W1

W2
, W2

W1
}. First we argue that in a number of situations,

R will be increased to a value that is greater than 2.
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Claim 3.2: Starting from W1 = W2 = 0.5, if the DEA
makes one error followed by one correct selection, then
R > 2.

Proof: The weight that is updated is always the
maximum weight. This means that when there is an error the
maximum weight will decrease by a factor of two, in this
case making min(W1,W2) = .25. Then the max(W1,W2) = .5.

If the next selection is correct then according to algo-
rithm 1 max(W1,W2) =

√
(.5) > .5, which leads to R =√

(.5)/.25 > 2.
Claim 3.3: Starting from max{W1,W2}< 0.25 and R≤ 2,

if DEA makes two consecutive correct selections, then R> 2.
Proof: R is the maximum of two positive recipro-

cal values, thus R ≥ 1. A single correct selection when
max{W1,W2}< 0.25 increases the correct weight, and thus R
by a factor of 2. Thus R≥ 2, and max{W1,W2}< 0.5. An ad-
ditional correct selection will then increase the max{W1,W2},
thus increasing R so that R > 2.

Claim 3.4: Starting from max{W1,W2} < 0.5 and R ≤ 2,
if DEA makes one error followed by one correct selection,
then R > 2.

Proof: A single error would decrease the max weight
by a factor of 2 so that min{W1,W2}< 0.25 and 1 < R≤ 2.

If max{W1,W2} ≤ 0.25 then a correct selection would
increase the max weight by a factor of 2 so that 2 < R≤ 4.

And if max{W1,W2}> 0.25 then a single correct selection
would increase the max weight such that max{W1,W2}> 0.5.
Then R = max{W1,W2}/min{W1,W2}> 0.5/.25 = 2.

Claim 3.5: By making consecutive correct selections, the
value of R can be increased until R = 1

min{W1,W2}
.

Proof: Each correct selection only affects the maxi-
mum weight. And while max{W1,W2} ≤ .25, max{W1,W2}
increases by a factor of 2. Once max{W1,W2} > .25,
max{W1,W2} is square rooted to form the new maxi-
mum. Thus max{W1,W2} converges to 1 as the num-
ber of consecutive correct selections increase. Since R =
max{W1,W2}/min{W1,W2}, and the minimum weight is
unchanged, R converges to 1

min{W1,W2}
.

The number of deviations the dual expert algorithm can
ignore depends on the actual ratio between the weights.

Claim 3.6: If R > 2K where K > 1, then (K−1) consec-
utive deviations can be ignored.

Proof: Each deviation reduces the ratio R by a factor
of 2. Because the larger weight is decreased by a factor of
2. Since R > 2K , the larger weight can be decreased by 2 for
a total of K− 1 times, and still be the larger weight, thus
allowing the algorithm to ignore K−1 deviations.

Therefore, if C makes deviations, the DEA will be more
robust than the WMA. Since the weighted majority algorithm
does not ignore deviations and the DEA does.

C. Adaptiveness Analysis

If we consider drift to be the change in preferred output
of the concept C from p to p̃. Then the adaptiveness of the
DEA can be shown to be directly linked to the amount of
deviations, that have been encountered before drift occurred.

Claim 3.7: R is bounded by the number of consecutive
deviations.

Proof: Claim 3.5 showed that the maximum of R is
R = 1

min{W1,W2}
. And only an error can decrease weights in

DEA and Proposition 3.1 showed that the error is bounded
by the number of deviations. Thus min{W1,W2} is bounded
by the number of consecutive deviations.

Therefore R = 1
min{W1,W2}

is bounded by the number of
consecutive deviations.

Claim 3.8: For any given 2K−1 ≤ R < 2K after output p̃
is observed for K consecutive iterations, DEA will change
from its selection p to the alternate selection p̃.

Proof: Each time the output is p̃ and DEA selects p
there is an error. This error decreases the maximum weight,
and thus R is reduced by a factor of 2.

Then after K−1 consecutive outputs of p̃, 1≤ R < 2.
If 1≤ R < 2 then an additional output of p̃ will decrease

the weight of p to be less than the weight of p̃. This will
change the selection from p to p̃.

Thus a maximum of K consecutive C outputs of p̃ are
needed to change the selection of the DEA.

These two claims imply that the number of errors needed
to change selections is limited by the number of deviations
leading up to the change. This can be compared to Winnow
algorithm where the 1 in R = 1

min{W1,W2}
is replaced by

max{W1,W2}, which can be very large. This allows Winnow
to be consistent but not adaptive.

IV. EXPANDED DUAL EXPERT ALGORITHM

The DEA uses two weights to select potential outcomes.
However an algorithm can encounter situations where the
preference depends on a parameter. If the parameter is
smaller than a threshold then output 1 is preferred otherwise
output 2 is preferred. An example of this type of parameter
would be the relative position that a human starts in a
hallway. Starting along the left wall would imply that the
human prefers passing on the left, and starting along the
right wall would imply the opposite. Somewhere between the
walls this preference changes. We propose the expanded dual
expert algorithm (EDEA) to learn these preferences using
weights that are function of the parameter.

The parameter is discretized into M values. We call each
values of the parameter a section and each section is indexed
by n. Let us assume that there are two edges n= 1 and n=M,
and that output 1 is the preference of edge n= 1, while output
2 is the preference at edge n = M. And the two weights are
now represented as two M dimensional vectors W i

1 and W i
2

indexed by i = 1,2, ...,M.
The EDEA algorithm in Algorithm 2 updates its weights

based on whether a correct or an incorrect selection is made.
Line 8 shows that when an incorrect selection is made the
weights between n and the edge that prefers the observed
output are decreased. And when a correct selection is made
the weights between n and the edge that prefers the observed
output are increased, as shown in line 10.
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Algorithm 2 Expanded Dual Expert Algorithm
1: Set W i

1 =W i
2 = 0.5 ∀i = 1 : M

2: The parameter is in section n
3: Choose selection a from argmax(W n

1 ,W
n
2 )

4: if W n
1 =W n

2 then
5: Choose selection randomly
6: end if
7: if Error then

8: W i
a =

W i
a/2, ∀i =

{
n : M if a = 1
1 : n if a = 2

9: else if Correct then

10: W i
a =

{
2W i

a if W i
a < 0.25√

W i
a if W i

a ≥ 0.25
∀i =

{
1 : n if a = 1
n : M if a = 2

11: end if

A. Performance Analysis

In order to discuss the performance of the algorithm we
will make the following additional assumptions. We assume
that there is a section index m so if n≤m, then the preferred
output is 1, and if n > m, then the preferred output is 2.
Since preference is dependent on sections and “deviations”
are defined as when the output varies from the concept
preference, we must allow deviations to be dependent on
sections. Define δn as the number of deviations in section
n. Thus the total number of deviations denoted as ∆ is
∆ = ∑

M
n=1 δn. Under this assumption, the error bound of the

EDEA is given below:
Proposition 4.1: The upper bound on the total error for

the EDEA algorithm is E = (M+1)∆+M.
Proof: There are two potential sources of errors in the

EDEA algorithm. Consider section n. An error that occurs
when a deviation occurs will decrease the ratio of

W n
p

W n
d

by a
factor of 2 in the section where the error took place. Each
error that occurs without a deviation will increase the ratio of
W n

p
W n

d
by a factor of 2 in the section where the error took place.

Each error that occurs can affect the ratio in a maximum of
M sections and a minimum of 1 section.

The maximum number of errors that can be caused by
deviations is the total number of deviations ∆. Since each
error due to a deviation can effect a maximum of M sections,
the ratio of

W i
p

W i
d

for i = 1...M would decrease by a factor of

2∆ . In order to increase this ratio to be greater than 1, the
ratio in each section must have an increase ∆+1 times.

In the worst case, each of these increases would be caused
by an error made without a deviation. And in the worst case,
the ratio in each section is brought to be greater than 1
individually. Since there are M sections this means that there
are at most M∆+M errors that occur without a deviation.
Therefore the bound on the error is E = (M+1)∆+M.

This error bound can be tightened to E = (max{m,M−
m}+1)∆+M if the section m where the preference changes
is known. Meaning one deviation can only decrease the
weight of the preferred output in max{m,M−m} sections.

B. Consistency Analysis

In EDEA, because weights within sections are updated
in the same way as weights are updated in DEA, the ratio
of weights in a section determines how many deviations
in that section can be ignored. The consistency also has
a dependence related to parameter. Suppose that the same
selection is preferred in sections w and s.

Proposition 4.2: If |m−w|> |m− s| then
W w

p
W w

d
≥ W s

p
W s

d
.

Proof: From EDEA, if W s
p is increased, then W w

p is also
increased. And if W s

d is decreased then W w
d is also decreased.

But an increase of W w
p does not guarantee an increase of

W s
p and a decrease of W w

d does not guarantee a decrease of
W s

d . Thus W w
p /W w

d increases if W s
p/W s

d increases, but is not
guaranteed to decrease if W s

p/W s
d decreases.

Since Wp/Wd = 1 in all sections before the first iteration.
It is true that

W w
p

W w
d
≥ W s

p
W s

d
.

C. Adaptiveness Analysis

Because the increase of weights within each section is
bounded similar to the bound in DEA, there will be the same
bound on the number of errors needed to change selections.
Proposition 4.2 showed that if |m−w|> |m− s| then

W w
p

W w
d
≥

W s
p

W s
d

. This also implies that adaptiveness has a dependence
related to the measured variable, and sections near m will be
more adaptive than sections near n = 1 or n = M.

V. SIMULATION

A. Dual Expert Algorithm

1) Setup: The learning of a concept C by the DEA, WMA,
and Winnow algorithms was simulated. C was created to
chose one of two outputs in each iteration of a trial. This
output was randomly generated using 5%, 10%, and 30%
probability of choosing the deviation. After 150 iterations,
drift was added by changing which output was the deviation
while keeping the probability of making a deviation constant.
This was repeated for 50 tests and the results were averaged.

Fig. 2. Total percentage of errors

2) Results: Figure 2 shows that before drift DEA’s error
rate is in the same range as Winnow. After drift DEA’s error
rate remains constant like WMA’s error rate, while Winnow’s
increases. Additionally figure 3 shows DEA’s switch rate is
close to Winnow, other than a spike at the time of drift, and
decreases towards 0, before and after drift, as the number
of trials increases. Thus DEA balances the consistency of
Winnow and the adaptiveness of WMA.
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Fig. 3. Percentage of switches for each group of 20 trials

B. Expanded Dual Expert Algorithm

1) Setup: The learning of a concept C by 5 different
algorithm was simulated. At the start of the trial the section
m, where the preference changes, was set to 7. Each iteration
could take place in one of 10 sections, randomly selected
with equal probability. And the output of C was randomly
chosen using the preference of the selected section and a
constant probability of deviation. After half of the iterations
(150) drift was simulated by changing m to 3. This was
repeated for 50 tests and the results were averaged.

The algorithms used to learn concept C are the EDEA,
the WMA, the Winnow, the DEA applied to each section
individually, the DEA applied with no regards to sections,
and the DEA modified to use more than two experts (multi
expert). Both the Winnow and WMA are created according
to their traditional multi-expert use [8], [9]. And the multi
expert algorithm uses experts in the same way as the WMA
and Winnow, however the update of weights is limited by
the weight of the selection. The experts used in all three
algorithms predicted 1 while n< i and 2 otherwise. Since i is
an integer between 1 and M +1, 11 control laws were created.
One of which would exactly match the concept preference.

Fig. 4. Total percentage of incorrect selections.

Fig. 5. Percentage of switches for each group of 20 trials.

2) Results: Figure 4 shows the average total rate of errors.
Before drift occurs EDEA can be seen to be decreasing
quickly, approaching the lowest error rate algorithm, Win-
now, along with the multi expert. After drift occurs Win-
now’s error rate dramatically increases. EDEA’s error rate
moderately increases, into the range or WMA’s error rate.
And the multi expert algorithm remains relatively constant.

Figure 5 shows that the average rate of switches. EDEA
and Winnow both have a small rate of switches that decrease
towards 0 as time increases before drift. After the drift, the
rate of EDEA switches spikes but then resumes descending
towards 0. Winnow’s switch rate also spikes, but is delayed
in comparison to EDEA. In addition the multi expert case
spikes at the same time as the EDEA, but to a switching rate
approximately four times as large.

The continued good performance both before and after
drift in the EDEA, and the limited spike in switching at the
time of drift supports the fact that it manages the balance
between consistency and adaptiveness well.

VI. EXPERIMENT

To test the applicability of the EDEA in an embodied
robot we implemented it onto a Turtlebot passing a human
in a hallway. The concept it was trying to learn was the
internal beliefs of the human that determined the wall they
approached when avoiding the robot. The parameter was
the distance the human was from the right wall. The two
selections that the Turtlebot could make was if the human
would pass by deflecting to the left or right. It then acted
by implementing the control law that moved it towards the
opposite wall.

The Turtlebot was chosen for this experiment since it
satisfied several important conditions. Its footprint is similar
to that of an averaged human. Hence it is able to pass in
a typical hallway setting. It can move at a speed that is
comparable to the averaged casual walking speed of a human.
It is equipped with a kinect and necessary software that can
identify an approaching object and its movements to the left
or to the right. And it can use obstacle avoidance behaviors
that can be modified to adjust the avoidance direction.

A. Setup

The experiments were performed using a single Turtlebot
that started centered in the hallway. The Turtlebot continued
down the center of the hallway until it detected a human
approaching. Then it selected a control law to avoid the
human. While it was moving towards the wall it continued
to watch the human to see if its selection was correct. It then
used this information to update algorithm 2.

Some limitations were found during the implementation
of the program. Most notably the fact that the noise from
the depth based human detection made it difficult to identify
human error quickly from a simple jerky motion. It was
however usually able to identify errors when the human
continued moving towards their intended wall.

Each test was set up with 10 iterations. The human initial
location was arbitrarily chosen. We placed a marker on the
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floor so that the human could determine if they started in one
of the 6 lanes with a left preference or one of the 4 lanes
with a right preference. The tests were repeated for 4 times.

B. Results
The following table compiles the averaged result over all

four tests along with average results from simulation data. It
includes the rate of errors, and switches. The lower portion
of the table compares the average of the four tests with
simulation results for 10% and 30% error rates, that were
10 trials long and averaged over 50 tests.

Test Error Rate Switch Rate
Experiment average 35.0% 12.5%

Simulation 10% error rate 27.2% 10.7%
Simulation 30% error rate 42.2% 12.1%

The average of the tests’ error was within the error bound
of the 30% simulation error. While the average number of
switching was only slightly higher than the 30 % error bound.
This shows even with the difficulties inherent in perception
the EDEA could still have a bounded error and switch rate.

Fig. 6. Four run average of weights for selection of human turn direction.
X-axis is hallway position. Red bars are the weight for the human passing
via the left wall and blue bars are the weight for passing via the right wall.

Figure 6 demonstrates the increased difference in weights
near the walls which is key for EDEA’s consistency, and the
decreased difference in weights near the switch point which
is key for the EDEA’s adaptiveness.

Overall the robot did learn the human’s preference which
was consistent throughout the tests. The number of errors
and switches is consistent with simulation. And the weight
ratio displays the same spatial dependence as selected. This
means that EDEA transfers well to physical implementation.

VII. CONCLUSIONS

This paper has shown that a balance between adaptiveness
and consistency can and should exist in robotic systems. And
we show that the weight adjustment of the DEA and EDEA
allow those algorithms to have that balance.

Increasing the applicability of these algorithms could be
accomplished by expanding them to consider additional
parameters. As seen in the EDEA expansion, increasing the
number of variables could also help with decreasing system
noise. These algorithms can also be more tailored to robotic
systems by increasing the number of output selections. More
closely resembling a behavior based robotic system.
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