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Target Localization: Energy-Information Trade-offs using Mobile
Sensor Networks

Wencen Wu!, Fumin ZhangZ, and Yorai Wardi2

Abstract— We investigate the energy-information trade-offs
in target localization using a group of N sensing agents based
on bearing measurements. We aim to design optimal trajectories
for the coordinating sensing agents that minimize the Kinetic
energy and maximize the information collected by the agents
along their trajectories. The determinant of Fisher information
matrix (FIM) is used as a metric for the information. Inspired
by biology, we construct a constrained calculus of variations
problem that captures the observation that better information
results in more energy dissipation, which requires higher energy
supply. We solve the equations of motion as Hamilton equations,
which produce a set of ordinary differential equations that can
be integrated for the trajectories of the agents. An extended
Kalman filter (EKF) is used to produce estimates of the state
of the target.

I. INTRODUCTION

Target localization and tracking is an important research
topic with various applications such as reconnaissance,
surveillance, and search and rescue [1]-[7]. To locate and
track a target, mobile sensors take measurements of the
target (e.g. bearing, range, time-of-arrival, or signal strength),
produce estimates of the state of the target, then, plan
their trajectories accordingly. A large body of recent work
exists in literature to address related problems such as state
estimation [8], trajectory optimization [2], [9] and optimal
sensor placement [10]-[12]. One common approach in the
existing literature is to formulate an optimization problem
given various performance metrics, and apply numerical
techniques to determine optimal trajectories of the agents.
Receding horizon control or model predictive control are
popular numerical methods that solve such optimization
problems iteratively when new information about the target
is obtained [2], [13], [14].

In biology, the energy-information trade-offs are often
observed in routine activities of animal species [15]-[17].
For example, a certain electric fish swim in a less efficient
manner that increases the cost of movement in exchange
with a higher encounter rate for prey [16]. Research on the
trade-offs between speed in making decisions and accuracy in
obtaining information in animals such as bees are reviewed in
[18]. Inspired by such biological insights, we investigate the
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trade-offs between energy and information in target localiza-
tion using mobile sensor networks. Since the operation time
of mobile sensor networks is greatly dependent on the energy
supply [19], and the largest amount of energy is consumed
by the motion, we focus on the kinetic energy of the mobile
sensor networks. As for information, Fisher information
matrix (FIM) is a common measure for information quality
[2], [9], [11], [12], [20], [21]. Optimal sensor configuration
can be derived by maximizing the determinant of FIM [10]—
[12]. Therefore, we use the determinant of FIM as a measure
of information quality.

We leverage the concept of energy-information trade-offs
to plan motion for a mobile sensor network consisting of a
group of collaborative mobile sensing agents. We formulate
a constrained calculus of variations problem, which is mo-
tivated by the design principle that captures the observation
that in order to maintain optimal sensor configuration and
obtain better information, more energy supply is required
to overcome the increased drag force from the environment,
leaving less energy for motion (kinetic energy), which is
similar to the electric fish case. Since the determinant of
FIM only depends on spatial (geometric) variables about
the agents and the target, we interpret it as the potential
energy of the tracking system. We solve the equations of
motion as Hamilton equations [22], which results in a set
of ordinary differential equations that can be integrated
to provide trajectories of the agents. Our method designs
optimal trajectories for the sensing agents that minimize the
kinetic energy and maximize the information along their
trajectories. The results clearly demonstrate the trade-offs
between kinetic energy and information.

We investigated the energy information trade-offs in [23].
In this paper, we extend the results in [23] in several
ways. First, we incorporate energy dissipation in the problem
formulation, which serves as the constraint for the calculus
of variations problem and clearly addresses the energy-
information trade-offs. Second, instead of just focusing on
the path planning without considering state estimation, in
this paper, we construct an extended Kalman filter (EKF)
and solve the state estimation and trajectory optimization
simultaneously, which is more realistic in practice. Third, we
extend the analysis from two agents to N-agent groups. The
advantages of considering N-agent groups include increased
information collected simultaneously and adaptiveness to the
environment and possible system failure.

Our work differs from existing literature of target localiza-
tion in that we formulate a constrained calculus of variations
problem, which takes into account the energy-information

2944



trade-offs that are often observed in animal species. Under
our framework, direct integration of the Hamilton equations
every time a new state estimation is obtained provides tra-
jectories of the agents, which is more computational efficient
than existing approaches based on path planning or model
predictive control that solve a fresh optimization problem
every time.

The rest of the paper is organized as follows. Section II
introduces background about bearings-only target tracking
and the Fisher Information and discusses the state estimation
using EKF. Section III introduces the problem formulation
of target localization using a mobile sensor network with the
consideration of energy-information trade-offs and provides
solutions for trajectories of the agents. Section IV illustrates
simulation results, and Section V concludes the paper.

II. BACKGROUND: BEARINGS-ONLY TARGET
LOCALIZATION

In this section, we set up the problem as N agents
localizing one target based on bearing-only measurements.
We then derive the determinant of FIM that quantifies the
information collected by the N agents and construct an EKF
that produces estimates of the state of the target.

A. Tracking Model

As illustrated in Fig. 1, let (x,y) be the inertial frame
and rr and r; be positions of a target and the ith agent in
the frame, i = 1--- N, respectively. The agent takes bearing
measurements of the target 6; € [—m, ] with respect to the
x axis. d; is the distance from the ith agent to the target that
satisfies d; =| r; —rr ||. Let rr = (rrx,77,) be the state of
the target and let r; = (7iy,7;y). Then, from the geometry
shown in Fig. 1, the bearing angle 6; satisfies

— (1)

6; = arctan Ty =Ty

rTx —Tix
We assume that each agent is aware of its position r; in the
frame and shares its measurement with a central controller.
At each time instant, after collecting the measurements from
the N agents, the central controller produces an estimate of
the state of the target 7. Under the assumption that each
agent only takes one measurement at each time instant, at
least two agents are required to locate a target. The goal is
to design trajectories for the N agents based on the estimated
state of the target ¥y so that the kinetic energy and the
information collected by the N agents along their trajectories
demonstrate trade-offs that mimic behaviors of certain animal

species.

B. Extended Kalman Filter

Let y; be the measurement obtained by the ith agent at
time ¢ and w be the measurement noise. Then, we have

Ty =i
5y Ly +w. (2)
rrx —Fi

yi = 6; +w = arctan

WX

Denote y as the vector consisting of all the mea-
surements collected from the N collaborating agents.
That is, y = b’l ,yN]T. Define /’l(I‘T) = [91,“- ,QN} =

rr
0 T
Fig. 1. Geometry of the tracking model.

Ty—Fly FTy—IN v
[arctan Z2—1 ... arctan -2—2]T " then, the measurement
FTx—Tlx 'Tx—INx

equation for the N sensing agents is

y=h(rr)+w, 3)

where w ~ .4#"(0,R) is zero-mean Gaussian noise vector with
covariance matrix R = 621, in which [ is an identity matrix.
Suppose the state equation is given by

fr = f(rr)+¢, “4)

where f(rr) is the state transition model and € is assumed
to be zero-mean Gaussian noise with covariance Q. We
construct an EKF to produce the state estimation, since
the measurement equation (3) is nonlinear. Other filtering
algorithms such as least-squares estimation [8], maximum
likelihood estimation [24], and Pseudolinear filtering [25]
can also be utilized without affecting the main results.
Define H as the Jacobian of the measurement vector with
respect to the state of the target. We derive H=V, h(rr) =

T
(38 o g% ) the ith row of which is

Ty Tiy

Hi = ( N (rT.x*ri.x)z‘F(rT.y*ri.y>2

I'Tx—Tix
(rT.x*ri.x)2+("T.y*ri.y>2 )
®)
Given state equation (4) and measurement equation (3), the
EKF can be constructed following standard steps:

tr = f(rr) +K(y —h(rr)),

P=FP+PFT —KHP+Q,

K=PH'R!, (6)
where F = ngfT and H = H|;,. At each time instant,
the updated state estimation from the EKF is used in the

trajectory planning for the agents, which will be discussed
in Section III-C.

C. Fisher Information

A common measure of the performance of an estimator
is the error variance, which indicates the uncertainty as-
sociated with the estimates obtained by the estimator. The
Cramer-Rao lower bound (CRLB) provides a lower bound
of the variance of an estimator given a set of measurements.
The inverse of the Cramer-Rao lower bound is referred to
as the Fisher information, which describes the amount of
information that the measurement y carries about the state.
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As stated in [10]-[12], [21], a configuration of the agents
over the space of all angle positions 6;, Vi € {1,--- N} is
optimal if the configuration maximizes the determinant of
Fisher information matrix, which is typically referred as the
D-optimality criterion.

Following similar derivations in [10]-[12], [21], we obtain
the FIM of the tracking system given the measurement
equation (3) as

I(r7) = Ve, h(rr) RV, h(rr)

1( N1}2s1n6

Z 12d2 sin26; ): ' 00529

1d2

-y, 242 sin26; )

(7

The determinant of the FIM can be calculated as

sin? 6;)
det(I o Z d2d2 , (8)

where § is the set that contains all pairs of i and j,
i,j=1,--- /N,j>i. The determinant of FIM implies that
to obtain maximum information when tracking a target, the
neighboring agents should triangulate, i.e., 6; — 6; — 7 and
move towards the target, i.e., d; — O.

III. ENERGY-INFORMATION TRADE-OFFS

In this section, we formulate the problem of target local-
ization using mobile sensor networks with the consideration
of energy-information trade-offs. By connecting the problem
with Hamiltonian mechanics, we obtain solutions for the
trajectories of the agents as Hamilton equations.

A. Energy-Information Trade-offs in Motion and Sensing

In mobile sensor networks, motion, communication, and
sensor information processing all consume energy. However,
motion usually is the largest user of energy for mobile agents.
Therefore, we focus on the kinetic energy of the tracking
system. Suppose the agents are point masses satisfying I; =
vi,i=1,---,N, in which v;;i=1,--- N are the velocities of
the agents. The kinetic energy of the N-agent system is

1y )
=5 vl ©)
i=1

To represent the information quality, we define

sin? ) o

where K is a constant. V is proportlonal to the determinant
of FIM.

We aim to find optimal trajectories for the agents so that
the kinetic energy is minimized while the information is
maximized. For this purpose, we define a cost function as

J= /OT(E—V)dt,

where T is the terminal time. Similar to the traditional
potential energy, V only depends on spatial displacements
of the agents relative to the target. Therefore, we interpret it

(10)

W

Y

as the potential energy of the tracking system. Hamiltonian
mechanicals tells us that if we consider the agents as Newto-
nian particles only subjecting to potential forces introduced
by potential energy V without dissipation, then, the total
energy of the system is conserved along the trajectories of
the N agents [22]. In other words, the Hamiltonian H, which
represents the total energy of the system: H = E' 4V, remains
constant along the trajectories of the agents. However, dissi-
pation may exist due to water or wind resistances, or other
kinds of friction forces. Therefore, extra energy supplies are
needed to maintain a constant value for H.

We draw inspirations from electric fish swimming with
their body tilted while moving though space searching for
prey. By swimming in this posture, the body area that
contacts with water increases to increase the amount of
information collected from the environment, resulting in
increased drags from water resistance, which further results
in increased energy consumption due to friction. If we
consider the cost of movement as energy provided internally
by the fish, which usually has a upper limit, then, with
the increased energy dissipation due to friction, less energy
is left for motion. In other words, the improvement of
sensory performance, which leads to higher prey encounter
rate, is associated with decreased energy supply for motion
[16]. If we interpret the prey encounter rate as information
collected by the sensors on the body of the fish, then, the
observation leads to a design principle that more information
results in more energy dissipation due to the friction, leaving
less energy for motion, which is referred to as the energy-
information trade-off principle.

In a mobile sensor network, each agent represents a sensor
node. As we discussed in Section II-C, to obtain better
information, the agents are required to maintain a desired
formation, the topology of which determines the sensing
area the mobile sensor network covers. This may lead to
different energy dissipation due to the drags and frictions
from the environment. Therefore, for the target tracking
system moving in an environment with drag forces, we
model the drag coefficient as K = K»det(I), in which K3 is a
constant. K implies that better information is associated with
larger drag force.

For path planning, define v as the velocity vector con-
sisting of the velocities of all the agents v;,i =1--- N.
v =[v;,---,vy]T. Given the drag coefficient, the drag force
applied to the N-agent tracking system is calculated as
F = Kv. Note that the drag force can be modeled as higher
order functions of v, which can be handled by our design too.
In this paper, we consider the case F = Kv for simplicity. The
energy dissipation caused by the drag force is then given by

2K
F-v=Kydet(l) || v |*= 7215\/ (12)

which implies that higher information and higher speed result
in more energy dissipation. In most cases, a dynamic system
only has a limited energy supply. Let E; be the maximum
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energy supply for the tracking system, then, we require

2K>
—FEV < E;.
K

13)

With the above discussion, we formulate a constrained
calculus of variations problem with fixed terminal time and
free terminal state with cost function (11) and constraint (13).
The problem is as follows.

Problem 3.1: With the updated state estimation f7 at
every time instant, find optimal trajectories I; = v; for agents
1,---,N, such that the cost function (11) is minimized
subjecting to the constraint (13).

B. Optimal Trajectories

In this section, we provide solutions to the constrained
calculus of variations problem in Problem 3.1. To unify the
variables in both kinetic and potential energy, we perform
coordinate transform from r; to d; and 6; using

riy =dcos@;, and r;,=d;sin6;. (14)

If we consider v; as the relative velocity from the ith agent
to the target and v; as the speed along the trajectory, then,
we derive v; = d? +d?6?. The kinetic energy of the system
(9) becomes E = 1YV | (d? +d?6?).

Under this framework, we define generalized coordinates
q and generalized velocities q for the relative distances
and bearing angles from the agents to the target. Let q =
[qtlia 7q;1\lvq(|-) 7q1(-\)/]1 in which lel =d; and 6],9 = Giai =
1,---,N. Then, the kinetic energy and potential energy can
be rewritten as

Eld.d ¢ d .62
(0,9) = 5 Y ((¢7)* +(a747)),

i=1
Ki v sin’(qf —4f)
on 5 (Q?‘]?)z

Thus, the cost function becomes

T
Na.d)= | (E@.q)-V@)d
N i —
/”Z ((41)* + (a47) an a’ ~4)

Vigq) = 15)

S qlqj)
- [ tia.aar (16)
. . sin” (¢f —q7)
where L(q.4) = 3T ((6)” + (¢40)°) — 3 s — o
w i1j

is the Lagrangian of the system. The cost function is actually
called the action in Lagrangian mechanics. Hamiltons prin-
ciple of least action states that the trajectories of the system
is a stationary solution of the action [22].

With the presence of energy dissipation, we denote the
constraint as

2K
“2E(q,q)V(q) — E <0. 17

m(q,q) = X,

Define %E (q,q)V(q) as E; and refer to it as the dissipated
energy. The problem is to find q and ¢ such that the

cost function (16) is minimized subjecting to the constraint
(17). We consider the problem as a constrained calculus of
variations problem with fixed terminal time and free terminal
state.

To solve this problem, we define an augmented Lagrangian

2

— E(q,q) - V(@) + 22 p(q.q)v () -

AE
K Sy

(18)

in which A is a Lagrange multiplier. A = 0 corresponds to the
case when the energy dissipation Ej; is less than the energy
supply E;. When the constraint is active, A > 0 according to
KKT conditions [26].

The Hamiltonian of the system translates n second-order
Lagrangian equations into 2n first-order equations, where n
is the number of degrees of freedom of the system [22].
Define the generalized momenta as p = g—L The Hamiltonian
and the Lagrangian are related by the Legendre transfor-

mation q = h(q,p,?) as follows: H(q p, ) Th(q p,t) —
L(q,h(q,p,t),t).Deﬁnep [pla "aPN;[)l '7pN}'We cal-
culate that
IL.(9.4) IE(q.q), , 20K
d a 9 ’
d _ = 1+ Vv
) 21K,
= g1+ V),
1
ILi(q,9) _ 9E(q.9) , , 24K,
¢} a\1, )
pl= g = T U T a)
) 20K,
=4 () (1+ ==V (@), (19)
1
which lead to the Legendre transformation
i Kl and ¢ — Kip? .
'K +2AKV(q)’ " (g?)(Ki+ 20K,V (q))
(20
Substituting ¢¢ and q? into FE(q,q) and defining

)2 . .
E(q,p) = %):fvzl ((pfi)z—i—%), we obtain E(q,q) =
K? '
w sk (4:P):
system as

We calculate the Hamiltonian of the

H(q,p) =p"h(q,p) — L(q,(q,p))
T S — Ki E(q,p)
(Ki + 24KV (q)) (K1 +2AK,V (q))?

2AK2 K12
E 4 AE;
K, (K1 +2AK2V(q))? (q.p)V(a)+

K
= mE(q,p) +V(q) + AEs,

+V(q) -

21

from which we derive the following equations by applying
dH .

the Hamilton equations q = a and p= ~9q"
) K JE(q,
dp (K1 +2AKV(q)) dp
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and
_ 9H _ K 9E(q,p)
T (Ki+22K:V(q))  9q
20K K>E(q,p) 9V(q) 9V(q)

23
(Ki +2AKV(q))* dq dq *)
q is known as in Equation (20). We calculate that
IE(q.p) _ (1))
aqf  (gf)*
JE(q,p) _
dq? ’
GAACIIE Y sin’ (¢ — q7)
8%1 oy =1 N, (Q?P(q?)z ,
W K sin(2(qf —q?))
5 =52 A 24
dgq; OW j—1,N,j#i (4} %)
In addition, A is determined by the constraint
2K K>
m(q,p) & T 2KV (q))2 (q,p)V(q) — Es (25)

The trajectories of the agents are obtained by plugging
Equation (24) into Equations (23) and (22) and integrating
Equations (23) and (22).

C. The Target Localization Algorithm

We now summarize the procedure of localizing a station-
ary target using N mobile sensing agents with the presence
of dissipation as follows.

Algorithm 3.2: Consider N sensing agents with bearing
sensors and a central controller that receives information
from all the agents. At t = 0, the initial locations of the
agents are [r;(0),---,ry(0)]. Repeat:

S.1 At time step ¢, each agent takes a bearing measurement
yi(t) of the target as shown in Equation (2).

S.2 the central controller runs the EKF that produces an
estimate of the location of the target f7 according to
Equation (6), and computes dj(r), d;(t), and 6;(1).

S.3 the central controller performs coordinate transform to
obtain §(¢) and p(¢), and calculate q(¢+1) and p(r+1)
by integrating Equations (23) and (22) after solving
Equation (25).

S.4 the central controller determine the next locations of
the agents r;(# + 1) using Equation (14).

S.5 the agents move to new locations r;(r +1).

The algorithm stops when r =T.

IV. SIMULATION RESULTS

In this section, we demonstrate simulation results of N
agents localizing one stationary target that sits at (0,0).
We simulate two cases: N =2 and N = 4. Fig. 2 and Fig.
3 illustrate the trajectories of N =2 and N = 4 agents,
respectively. The initial locations of the agents are at (1,1.4)
and (1,—1.4) in Fig. 2, and are at (—2.5,2.7), (2.3,1.8),
(—=1.9,2.4) and (2.2,—2.7) in Fig. 3. The initial locations
are indicated by the stars in the two figures. The dots are

1.5

0.5¢ : : : ; ; 1

102 04 os o8 1 1.2

Fig. 2. Trajectories of two agents localizing one stationary target with drag
forces from the environment.

the positions of the agents at each time instant. The initial
velocity of all the agents is [—2,0]7.

Following Algorithm 3.2, at each time step, each agent
takes one noisy bearing measurement of the target. Then
a central controller collects all the measurements, runs the
extended Kalman filter to produce the state estimation of
the target, and calculates the next positions of the agents by
solving Equations (22) and (23).

Since the dots in the figures represent the positions of
the agents at each time instant and the time step is constant
in the simulation, we can observe from Figs. 2 and Fig. 3
that, while moving towards the target, the agents reduce their
speed to reduce their kinetic energy (the distances between
two adjunct dots are getting closer). In the meanwhile, the
differences of the bearing angles between two adjunct agents
are kept close to %, which aims to maximize the information.
Fig. 4 demonstrates the kinetic energy E (red dotted line),
the information V (blue solid line), the cost function L (green
dashed line), and the Lagrange multiplier A (magenta dash-
dot line) of the four-agent tracking system. In this case, the
maximum energy supply to the tracking system is E; = 0.6.
As we can clearly observe from Fig. 4, the constraint (17) is
inactive along the trajectories for most of the time (4 = 0),
indicating that the maximum amount of energy dissipation is
less than the energy supply E;. When the energy dissipation
of the system exceeds the energy supply, for example, the
agents speed up so that the kinetic energy increases, the
constraint becomes active (A > 0), which regulates the speed
of the agents. We can also observe from Fig. 4 that along
the trajectories of the agents, the kinetic energy E keeps
reducing and information V keeps increasing, demonstrating
the energy-information trade-offs in the tracking system. It
is worth mentioning that with the increased energy supply
E;, we can obtain better information (V increases). This is
consistent with the observation from electric fish that better
information requires more energy supply.
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Fig. 3. Trajectories of four agents localizing one stationary target with
drag forces from the environment.
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Fig. 4. Information, kinetic energy, cost function, and Lagrange multiplier
along trajectories of four agents localizing one stationary target with drag
forces from the environment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the energy-information trade-
offs in target localization using N sensing agents based on
bearing measurements. Inspired by observations in biology,
we design optimal trajectories for a group of coordinating
sensing agents that minimize the kinetic energy and max-
imize the information collected by the agents along their
trajectories based on a design principle that more information
requires more energy supply. The determinant of FIM is used
as a metric for the information. An EKF is used to produce
state estimation of the target. We construct a constrained
calculus of variations problem and solve the equations of
motion using Hamilton equations, which produces a set of
ODEs that can be solved for the trajectories of the agents.
Future work includes extension to distributed algorithms and
tracking of moving targets.
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