
A Path Planning Approach To Compute The Smallest Robust Forward

Invariant Sets

Shayok Mukhopadhyay and Fumin Zhang

Abstract—Robustness of nonlinear systems can be analyzed
by computing robust forward invariant sets (RFIS). The small-
est RFIS provides the least conservative estimate of system
performance under perturbations. However, computation of the
smallest RFIS through brute force search can be a difficult
task. We develop a novel algorithm to find the smallest RFIS
for two-dimensional systems subjected to bounded additive per-
turbations. The algorithm leverages path planning algorithms
to produce an approximation of the boundary of the smallest
RFIS. The algorithm is mathematically justified, and simulation
results are provided showing that the proposed algorithm can
be used to find an RFIS that is very close to the smallest RFIS.
The amount of computation is effectively reduced. Hence the
algorithm may be generalized to higher dimensional systems
with generic perturbations.

I. INTRODUCTION

Explicit performance bounds are desirable for robust-

ness analysis of nonlinear systems. The methods based on

input-to-state stability (ISS) may provide a conservative

performance bound. Less conservative bounds on system

performance may be obtained using the concept of a robust

forward invariant set (RFIS) [1]. Given a system perturbed

by bounded additive disturbances, it is hard to guess or

establish analytically the shape or size of the smallest RFIS.

Computational methods can be useful in such a situation.

Estimating the size of an RFIS is similar to the problem

of estimating the region of attraction around an equilibrium

point of a system. The problem of estimating the domain

of attraction has been widely studied [2], [3]. Zubov’s

method [4] consists of solving a partial differential equation

for computing the domain of attraction. In [5] the authors

extend Zubov’s method to perturbed dynamical systems. If

Lyapunov functions can be constructed, then their sublevel

sets can be used to characterize the region of attraction

[6]. The sum-of-squares optimization method combined with

parameter independent Lyapunov functions and branch-and-

bound type refinement algorithms have been applied by the

authors in [7], [8]. However, the above procedure requires a

family of Lyapunov functions. Lyapunov functions are not

always easily found [9]. In [10], the lower and upper bounds

for the size of the smallest invariant set are established for

a scalar system.
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Our goal is to compute the smallest RFIS efficiently.

Lyapunov based techniques are not used. This is because

invariant sets computed may turn out to be the sublevel

sets, hence offering conservative results. The novelty of our

approach is that we leverage path planning algorithms so

that the optimal path approximates the boundary of the

smallest RFIS. The A∗ [11] path planning algorithm is

well known to reduce the amount of computation required

to find optimal paths, compared to brute force search. We

derive the conditions under which the proposed algorithm

terminates and produces points belonging the the boundary

of the smallest RFIS. The scope of this work is limited to two

dimensional systems with additive perturbations belonging

to a compact set. Generalization to higher dimensions, and

inclusion of more general classes of disturbances is left for

future efforts.

The notation and definitions used are presented in Sec-

tion II. The problem of computing the smallest RFIS is

formulated in Section III followed by details of the proposed

algorithm in Section IV. Mathematical justifications are

provided in Section V, and Section VI presents simulation

results. We present our conclusions in Section VII.

II. NOTATION AND DEFINITIONS

Consider the system ẋ(t) = ϑ(x(t), δ(t)). Here ϑ :
R

2 × R
2 → R

2, and δ : R → R
2 is a time varying

bounded disturbance such that standard conditions for ex-

istence, uniqueness of solutions are met. Let x̄ ∈ R
2, and

ϑ(x̄, 0) = 0. Assuming the dynamics can be written as

ϑ(x(t), δ(t)) = f(x(t)) + δ(t), where f : R2 → R
2, and the

disturbance function δ : [0,+∞) → U . The set U is defined

as [−δ0, δ0]×[−δ0, δ0], for some known value δ0 ∈ [0,+∞).
Let MU denote the set of all measurable, locally essentially

bounded functions δ : [0,+∞) → U . As per [1], an RFIS

is defined for a system in R
2 as follows. Take any open

subset X of R2, and any point E ∈ X . Consider a forward

complete system ẋ(t) = F(x(t), δ(t)) with state space X ,

and perturbations δ ∈ MU such that standard existence

and uniqueness properties of solutions are satisfied for all

initial conditions in X , and all perturbations δ ∈ MU .

Let F(E , 0) = 0. Let S ⊆ X be any neighborhood of E .
The set S is an RFIS for the system ẋ(t) = F(x(t), δ(t))
with perturbations valued in U , if all trajectories of the

above system, for all initial conditions valued in S , and

perturbations δ ∈ MU remain in S for all positive times.

Let D ⊆ R
2 be a region of interest, let all simple

closed curves in D be positively oriented. Let P , Q be

two sequences of equal length consisting of points pi, and
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Fig. 1. Types of convex cones: (a) A pointed convex cone. (b) A convex
cone which is not pointed.

qj respectively from Euclidean space. Define the distance

between sequences P , Q as d2(P,Q) =
∑n

l=1 ‖ pl − ql ‖2,
where pl ∈ P , and ql ∈ Q. Let seg (a; b) denote the segment

joining any two given points a, b in Euclidean space.

The following definitions are from [12]. A cone C ∈ R
n is

a set of points x ∈ R
n such that, if x ∈ C , then for all non-

negative λ ∈ R, λx ∈ C . A cone C ∈ R
n is a convex cone

if, and only if (a) for x ∈ C , λx ∈ C for all non-negative

λ ∈ R; (b) if x1, x2 ∈ C , then x1 + x2 ∈ C . A convex

cone C is pointed if, given any arbitrary vector ā ∈ R
n it

contains no line L = {x : x = λā for all λ ∈ R, x ∈ R
n}.

A vector ā 6= 0 belonging to a convex cone C ∈ R
n is

an extreme ray, if ā cannot be expressed as a non-negative

linear combination of any two linearly independent vectors

from C .

The following definitions are related to path planning on

directed graphs [11]. A graph is a set {pij} of elements

called nodes and a set {(pij , pkl)} of pairs called arcs.

Here i, j, k, l belong to some bounded subset of N (natural

numbers), and each arc is directed from node pij to node pkl.
Given an arc (pij , pkl), node pkl is a successor node of node
pij , the nodes pij , pkl are connected, and pkl is accessible

from pij . The cost of an arc (pij , pkl) is represented by the

scalar c(pij , pkl). A path is an ordered set of nodes with each

p(i+1)k a successor of pij . Every path has a cost obtained

by adding the individual costs for each arc in the path. An

optimal path from pij to pkl is a path having the smallest

cost over the set of all paths from pij to pkl. Some specified

non-empty set S ⊂ {pij} is the source set. A single specified

node pij belonging to a given source set S is the source node.

Given a graph formed by a set of nodes {pij} and a set of

arcs {(pij , pkl)}, a goal set T is a non-empty set of nodes

T ⊂ {pij} accessible from some specified source node in

{pij}. Let node pkl belong to a particular goal set. The node

pkl is a preferred goal node of a particular source node pij if
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Fig. 2. Illustrations: (a) Types of solutions to the problem of finding an
RFIS. (b) The quantity α ◦ Cϑ(x) for a pointed convex cone at a point x.

the cost of an optimal path from pij to pkl does not exceed
the cost of any other path from pij to any other member

of the chosen goal set. In this work, the number zero is

considered included in N, and each node pij has two indices

i, j representing the physical location of a node pij ∈ R
2.

III. PROBLEM SETUP

A. Problem Statement

Consider a system of the form ẋ(t) = ϑ(x(t), δ(t)) with a

unique asymptotically stable equilibrium x̄ i.e. ϑ(x̄, 0) = 0,
a particular function δ(t) ∈ MU , a finite constant δ0 ∈
[0,+∞), and time t ∈ [0, Tmax], where Tmax ∈ R, Tmax >
0. Given an invariant set B ⊆ D containing the equilibrium

x̄, find the smallest set contained in B which is an RFIS

for time t ∈ [0, Tmax]. Here Tmax is introduced, because

the computational approach proposed samples a given time

varying vector field ẋ(t) = ϑ(x(t), δ(t)) over a finite time

interval. The set B is introduced because the proposed

algorithm begins with an initial guess of the smallest RFIS,

this is represented by the set B. An initial guess and expected

solutions to the above problem are shown in Fig. 2 (a).

B. An Optimization Problem

Suppose the vector field ϑ : R2×R
2 → R

2, and a pointed

convex cone C (x) with vertex at point x ∈ R
2 are given.

Let Cϑ(x) be a pointed convex cone with vertex at point

x ∈ R
2 such that, for all ν ∈ Cϑ(x), ν ∈ Image(ϑ(x, ·)).

Let a vector N(x) be given at the point x. The quantity α
for a given pointed convex cone Cϑ(x), at point x ∈ R

2 is

written as α ◦ Cϑ(x), and defined as

α ◦ Cϑ(x) = min
ν∈Cϑ(x)

{
〈 ν,N(x) 〉

‖ ν ‖ ‖N(x) ‖

∣∣∣∣ ‖ ν ‖ , ‖N(x) ‖ 6= 0

}

(1)

where ν is an extreme ray of Cϑ(x) and cos−1(α) ∈ [−π, π].
An illustration of the above definition is provided in Fig. 2

(b), where the cosine of the angle between vector ν1, N(x)
is the least compared with the other extreme ray (vector) ν3.
The idea is that vector N(x) is a normal vector to some

curve at a given point x. One such curve is the boundary of

the smallest RFIS. The problem of finding the smallest RFIS

is now the following, find all x ∈ D satisfying

min
x∈D

α ◦ Cϑ(x), s.t. α ◦ Cϑ(x) ≥ 0. (2)

Solutions to the optimization problem in (2) may be obtained

by a brute force search, but this is inefficient.

The following transforms the constrained optimization

problem in (2) into an equivalent unconstrained one. Pick

a sufficiently large positive constant g̃ satisfying conditions

required for Lemma 5.1 to hold, and consider the function

η : [−1, 1] → (0, 1] ∪ g̃ defined as below.

η(x) =

{
x, x ∈ (0, 1]

g̃, x ∈ [−1, 0]
(3)

Now, the problem in (2) is reformulated as,

min
x∈D

(η ◦ α ◦ Cϑ)(x). (4)
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Assigning infeasible solutions a high cost g̃ using the func-

tion η(·) helps recast the problem in (4) into a path planning

problem. Since the smallest RFIS around an equilibrium

point x̄ is desired, the problem in (4) is modified to include

a cost related to the size of the solution set as follows

min
x∈D

(η ◦ α ◦ Cϑ)(x) + λ1 ‖x− x̄ ‖2 . (5)

Here λ1 > 0 is a real weight which is fixed to be a desired

number. Higher values for λ1 penalize solutions x which are

farther from the equilibrium x̄.

C. A Path Planning Problem

The ideal path will go around the equilibrium forming a

positively oriented simple closed curve which approximates

the boundary of an RFIS. Pick a convex set B with a simple

closed curve as its boundary such that the equilibrium x̄
belongs to the interior of B. It is assumed that such a choice

of a set B is possible. This set B is an initial guess for the

desired RFIS, therefore as mentioned in section III-A, the set

B must itself be invariant. Sublevel sets of strict Lyapunov

functions serve as good choices for B, thus techniques from

[9] may be helpful to initialize our algorithm.

1) Discretization of the search space: The first step is to

discretize the space into a radial grid. Select N + 1 distinct

points b0, b1, · · · , bN from the boundary of B. Connect the

equilibrium point x̄ to each of these points. Let the index

i ∈ {0, 1, · · · , N}. For simplicity we can choose bi so that

the angle between each segment seg (bi; x̄) and the x-axis is
2πi
N+1 ∈ [0, 2π] . The points b0, b1, b2, and bN are indicated on

the boundary of a square set in Fig. 3 (a). The set B is convex

by choice, and x̄ is in the interior of B. By construction,

B contains all line segments joining x̄ to each point bi.
Next, discretize each segment seg (bi; x̄) into n + 1 points

pij where i ∈ {0, 1, · · · , N} and j ∈ {0, 1, · · · , n} where

pij = bi + j(x̄−bi)/n. Notice that a point pi0 = bi (on the

boundary of B), and pin = x̄ by construction. Let the set Ai

named a segment set, be the set of points {pij ∈ seg (bi; x̄)}.
The segment sets A0 to AN are shown by dashed line

segments in Fig. 3. The points pij belonging to these segment

sets are marked by circles. Now, convert the problem in (5)

p00,
b1

pN0,
bN

p10,
b1p11p22

p21

p20, b2p40, b4
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Fig. 3. (a) Discretizing the search space to find the smallest RFIS (dotted
ellipse) contained within a given invariant set B. The shaded circle is the
equilibrium x̄. (b) Embedding a directed graph structure.

into the following N+1 separate unconstrained optimization

problems. For all i ∈ {0, 1, · · · , N}, find an x satisfying

min
x∈seg(bi;x̄)

(η ◦ α ◦ Cϑ)(x) + λ1 ‖x− x̄ ‖2 , λ1 > 0. (6)

Path planning algorithms can be used to solve (6).

2) Embedding a directed graph structure: To use path

planning algorithms producing positively oriented simple

closed curves around the equilibrium point as solutions to

(6), the following graph structure is proposed. Excluding the

equilibrium point x̄, we connect every point in segment set

Ai to every point in segment set Ai+1. We do not connect

any point in a segment set Ai to any other point on the same

segment set, or to any point in segment set Ai−1, i.e. paths

cannot go backward (or clockwise around the equilibrium

x̄). To produce closed paths, the index i is made to wrap

around i.e. i+1 = 0 if i = N , and i− 1 = N if i = 0. This
connects points (excluding the equilibrium) in segment set

AN to points in segment set A0. This graph structure, which

is named G′, is seen in Fig. 3 (b). Paths exist from each of

the points p00, p01, p02 ∈ A0 directed to each of the points

p10, p11, p12 ∈ A1. Similarly, given a point pN2 ∈ AN ,

directed paths exist to points p00, p01, p02 ∈ A0. Now path

planning is used on the graph G′ to get solutions for (6).

IV. PATH PLANNING ALGORITHM

A. Setting Up Sources, Goals, And Cost Functions

The A∗ path planning algorithm requires a source node, a

goal set and an evaluation function to estimate the cost of a

path planned. Finding the smallest RFIS requires the source

set and the goal set to be the same, i.e. segment set A0. The

A∗ algorithm [11] terminates if the source node belongs to

the goal set. To ensure source nodes do not belong to the goal

set, a path forming a boundary of the smallest RFIS must

be planned in at least two halves. The first half originating

at a source node belonging to the set A0 and terminating

at a preferred goal node on the segment set AN ′ , where

N ′ = ⌊N/2⌋. The second half originates at the node where

the first half of the path terminated in the set AN ′ , and the

goal set for the second half is the set A0.

Let f(pij) be the actual cost of an optimal path constrained

to go through node pij , from a given source node to a

preferred goal node. The cost f(pij) can be expressed as

the sum f(pij) = g(pij) + h(pij), where g(pij) is the

actual cost of a path from a source node to the node pij ,
and h(pij) is the actual cost of an optimal path from pij
to a preferred goal node. An evaluation function f̂(pij) is

required so the proposed path planning algorithm eventually

makes the estimated cost f̂(pij) converge to the optimal cost

f(pij). To construct the cost functions, we first define

N(pij)
△
= Γπ/2(pij − p(i−1)k). (7)

The symbol Γπ/2 in (7) represents the standard rotation

matrix in R
2. The vector N(pij) in (7) is therefore just the

vector pij − p(i−1)k rotated counterclockwise by 90◦. Then
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the cost that measures the angle between the extreme ray of

the pointed convex cone Cϑ(pij) and N(pij) is

c(p(i−1)k, pij) = (η ◦ α ◦ Cϑ)(pij) + λ1 ‖ pij − x̄ ‖2 . (8)

The following evaluation functions will be used for A∗.

f̂(pij) = ĝ(pij) + ĥ(pij), where ĥ(pij) = 0 (9)

ĝ(pij) = min
0≤k≤n−1

(c(p(i−1)k, pij) + ĝ(p(i−1)k)), (10)

where j, k ∈ {0, 1, · · · , n − 1}, i ∈ {1, · · · , N}, and the

initial cost is zero i.e. ĝ(p0k) = 0 for all k ∈ {0, 1, . . . , n−
1}. The constant λ1 in (8) is non-negative and is already

chosen during formulation in (5). Since the index i wraps

around, the case of going from set AN to A0 is given by

ĝ(p0j) = min0≤k≤n−1(c(pNk, p0j) + ĝ(pNk)). This ĝ(p0j)
should not be confused with the zero initial cost. The zero

initial cost only applies at the start of a new path being

planned from a source node in segment set A0.

If the evaluation function f̂(pij) is equal at multiple points

pij ∈ Ai, then the point pij with the smallest index for j
is selected as the preferred goal node for a node p(i−1)k

belonging to set Ai−1. Such a tie-breaker rule minimizes

the quantity (η ◦ α ◦ Cϑ)(pij) as shown in Lemma 5.2.

B. The Proposed Algorithm

Algorithm 1 presents the pseudocode proposed to find

the smallest RFIS. The quantity r is the iteration count.

The sequence P0 is initialized with points {b0, b1, · · · , bN}.
Algorithm 1 generates a sequence Pr every iteration. As

r → ∞, Pr approaches the desired boundary. The variable

σ decides when Algorithm 1 terminates, σ is initialized at a

value greater than a given small non-zero positive constant ǫ.
Let p̃r,0 be a source node p0j ∈ A0. In each iteration r, the
first half of a circular path is planned starting from point p̃r,0
to the goal set AN ′ , where N ′ = ⌊N/2⌋. The points (nodes)

picked by A∗ from the segment sets A0, · · · ,AN ′ are stored

into the sequence Pr in the order {p̃r,0, p̃r,1, p̃r,2, · · · , p̃r,N ′}.
Here a point p̃r,i belongs to the segment set Ai, 0 ≤ i ≤ N ′.

The second half of a circular path is planned starting from

the point p̃r,N ′ ∈ AN ′ to the goal set A0. The sequence Pr

is updated with the points picked by A∗ from the segment

sets AN ′+1, · · · ,AN as

Pr = {p̃r,0, p̃r,1, · · · , p̃r,N ′ , p̃r,(N ′+1), · · · , p̃r,(N−1), p̃r,N}.
(11)

To start iteration r + 1, the point picked by A∗

from segment set A0 at the end of iteration r is

assigned to p̃r+1,0. The variable σ is updated with

the distance d2(Pr, Pr−1). If σ ≤ ǫ, Algorithm 1

terminates. We hypothesize that under certain condi-

tions, the simple closed curve formed by seg (p̃r,0; p̃r,1),
seg (p̃r,1; p̃r,2),· · · , seg (p̃r,N−1; p̃r,N ) , seg (p̃r,N ; p̃r,0) is the
closest approximation to the boundary of the smallest RFIS.

The constants h, g̃, Tmax and f̂(·) are used by A∗ inter-

nally. Suppose during iteration r of Algorithm 1 A∗ is at

node p(i−1)k ∈ Ai−1 of graph G′. To find the least cost

path, A∗ evaluates the estimated cost c(p(i−1)k, pij) to every

node pij ∈ Ai to which a directed path exists from node

Algorithm 1: Compute a robust forward invariant set

Data: Sets A0 to AN , graph G′, f̂(·), p0j ∈ A0,

ǫ, h, g̃, Tmax ∈ R, and n,N ∈ N.

Result: Pr

1 Let r = 1, N ′ = ⌊N/2⌋ , σ = 2ǫ, P0 = {b0, b1, · · · , bN};
2 Let p̃r,0 = p0j ∈ A0;

3 while σ > ǫ do

4 Use A∗ to find an optimal path from p̃r,0 ∈ A0 to

the goal set AN ′ ;

5 Let p̃r,N ′ represent the point picked by A∗ in line 4

from the segment set AN ′ ;

6 Store the points obtained above as the sequence

Pr = {p̃r,0,∈ A0, p̃r,1 ∈ A1, · · · , p̃r,N ′ ∈ AN ′};
7 Use A∗ to find an optimal path from p̃r,N ′ ∈ AN ′

to the goal set A0;

8 Let p̃r,N represent the point picked by A∗ in line 7

from the segment set AN ;

9 Let p̃r+1,0 represent the point picked by A∗ in line

7 from the segment set A0;

10 Update sequence Pr as

Pr = {p̃r,0 ∈ A0, · · · , p̃r,N ′ ∈ AN ′ , p̃r,N ′+1 ∈
AN ′+1, · · · , p̃r,N ∈ AN};

11 Compute σr = d2(Pr, Pr−1);
12 Let σ = σr, p̃r,0 = p̃r+1,0 ∈ A0;

13 r = r + 1;

14 return Pr;

A0

p̃r,0

A1A2A3

A4

A5

AN′=6

A7

A8 A9 A10

A11

AN=12

p̃r,1

p̃r,2
p̃r,3

p̃r,4

p̃r,5

p̃r,6

p̃r,7 p̃r,8 p̃r,9

p̃r,10

p̃r,11

p̃r,12

p̃r+1,0
x̄

Fig. 4. An illustration of planning the required path in two halves. First
from A0 to AN′ , and then from AN′ back to A0. Set A0 is shown not
lying on a horizontal line segment because any segment set can be chosen
to be the set A0 as desired.

p(i−1)k. From (8), evaluating c(p(i−1)k, pij) requires the

evaluation of α◦Cϑ(pij), the details of which are as follows.

As per the problem statement in section III-A, the smallest

RFIS is required to be invariant for time t ∈ [0, Tmax]. Let
tl = tl−1 + h, where l ≥ 1, 0 ≤ tl ≤ Tmax, t0 = 0 and

h is the desired time step. At each instant tl find vector

νl = ϑ(pij , δ(tl)). If the set of vectors νl forms a pointed

convex cone Cϑ(pij), then from Fig. 2 (b) it is obvious that

a vector νl minimizing
〈νl,N(pij)〉

‖ νl ‖‖N(x) ‖ is an extreme ray of the

cone Cϑ(pij). The definition in (1) requires such a vector,

thus the vector νl obtained as above is used to compute

the quantity α ◦ Cϑ(pij). The second term in (8) is just the
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distance between the equilibrium point x̄ and the point pij .

V. MATHEMATICAL JUSTIFICATION

Here we justify that Algorithm 1 provides an approxima-

tion of the smallest RFIS. First, we show how an improper

choice of g̃ may violate constraints in (2). Let λ1 = 1 already
be fixed. Pick the positive constant g̃ = 0.1. Let pij , pik ∈
Ai such that ‖ pij − x̄ ‖2 = 0.5, ‖ pik − x̄ ‖2 = 0.2 and

α ◦ Cϑ(pij) = 0.5, α ◦ Cϑ(pik) = −0.5. Let ĝ(p(i−i)l) = 0
for point p(i−1)l ∈ Ai−1. Suppose it is required to go from

p(i−1)l ∈ Ai−1 to the segment set Ai. From (3), (8) and

(10), the cost to go from p(i−1)l ∈ Ai−1 to point pij ∈ Ai is

f̂(pij) = 1. And, the cost to go from point p(i−1)l ∈ Ai−1

to point pik ∈ Ai is f̂(pik) = 0.3. If g̃ = 0.1, then

A∗ will pick point pik when finding a path from a given

point in set Ai−1 to set Ai, if costs at all other points in

set Ai are greater than 0.3. This violates constraints in (2)

as α ◦ Cϑ(pik) < 0. Lemma 5.1 specifies conditions that

g̃ must satisfy to avoid such a situation. The assumptions

i ∈ {0, 1, · · · , N}, j ∈ {0, 1, · · · , n − 1}, pij ∈ Ai and

h(pij) > 0 for all i, j are made for all following results.

Lemma 5.1: Let a graph G′, a point p(i−1)k ∈ Ai−1, and

a non-zero positive constant λ1 be given. Let ĝ(p(i−1)k) be
a given non-negative number. Suppose for all i there exists

at least one j such that α◦Cϑ(pij) ∈ (0, 1], where pij ∈ Ai.

If the constant g̃ > 1 + λ1 ‖ pij − x̄ ‖2 for all i, j, then
α ◦ Cϑ(pij∗) ∈ (0, 1] where pij∗ ∈ Ai is the preferred goal

node chosen by the A∗ algorithm to go from the given point

p(i−1)k ∈ Ai−1 to the segment set Ai.

Proof: A proof is provided by contradiction. Suppose

the constant g̃ > 1+λ1 ‖ pij − x̄ ‖2, but α◦Cϑ(pij∗) /∈ (0, 1].
By the definition of α(·) in (1), cos−1(α) ∈ [−π, π], this
implies that α(·) ∈ [−1, 1]. Since α ◦ Cϑ(pij∗) /∈ (0, 1] this
means that α ◦ Cϑ(pij∗) ∈ [−1, 0]. Pick a point pij′ ∈ Ai,

such that α ◦ Cϑ(pij′) ∈ (0, 1]. Such a choice is possible

due to the assumptions. A graph G′ is given, therefore there

exist directed paths from the given node p(i−1)k ∈ Ai−1

to each node pij∗ , pij′ ∈ Ai, and from (3) η(·) > 0.
Therefore from (8), the cost of a directed path from a node

p(i−1)k to any node pij is non-zero. Since ĥ(·) = 0 is

chosen in this work, hence ĥ(pij) < h(pij) for all i, j
by assumption, the requirements for using A∗ are satisfied.

Hence f̂(pij∗) ≤ f̂(pij′) by [11, Theorem 1], as pij∗ is the

preferred goal node, and A∗ generates an optimal path from

p(i−1)k ∈ Ai−1 to the set Ai. Since the points pij∗ , pij′ ∈ Ai

and p(i−1)k ∈ Ai−1 are particular points which are given,

therefore from definitions of f̂(·), ĝ(·) in (9), (10) the follow-

ing can be written, c(p(i−1)k, p
∗(ij)) ≤ c(p(i−1)k, p

′
ij′). Now

α ◦Cϑ(p
′
ij′) ∈ (0, 1], hence from (8) and from the definition

of η(·) in (3), c(p(i−1)k, p
′
ij′) ≤ 1 + λ1

∥∥ p′ij′ − x̄
∥∥
2
, hence

c(p(i−1)k, p
∗(ij)) ≤ 1 + λ1

∥∥ p′ij′ − x̄
∥∥
2
. (12)

Also α◦Cϑ(p
∗
ij) ∈ [−1, 0], hence from (8) and from the defi-

nition of η(·) in (3), c(p(i−1)k, p
∗(ij)) = g̃+λ1

∥∥ p∗ij − x̄
∥∥
2
.

But by assumption, g̃ > 1+λ1 ‖ pij − x̄ ‖2 for all i, j. Hence,

c(p(i−1)k, p
∗(ij)) > 1 + λ1

∥∥ p′ij′ − x̄
∥∥
2
. (13)

But (13) contradicts (12), and therefore by this contradiction

we have the required result.

Therefore, so long as g̃ satisfies the conditions in Lemma

5.1, Algorithm 1 picks points which do not violate the

constraints in (2). The following result concerns the tie-

breaker rule presented at the end of section IV-A.

Lemma 5.2: Let a point p(i−1)l ∈ Ai−1 such that

ĝ(p(i−1)l) is a non-negative number, be given. Further, let

a set of points {pij} belonging to the segment set Ai such

that f̂(pij) is equal for each point in the set {pij}, be given.
If j∗ is the smallest index j such that pij∗ ∈ {pij}, then
point pij∗ minimizes (η ◦ α ◦Cϑ)(pij) on the path from the

point p(i−1)l ∈ Ai−1 to the set Ai.

Proof: Let j∗ be the smallest index j such that

pij∗ ∈ {pij}. Let k 6= j∗ be any other index j such that

pik ∈ {pij}. Since f̂(pij) is equal for each point in the set

{pij}, therefore f̂(pik) = f̂(pij∗). Further, since the points

pij∗ , pik ∈ Ai and p(i−1)k ∈ Ai−1 are particular points,

therefore from definitions of f̂(·), ĝ(·) in (9), (10) we have

c(p(i−1)l, pik) + ĝ(p(i−1)l) = c(p(i−1)l, pij∗) + ĝ(p(i−1)l).
By the definition of c(·, ·) in (8) and re-arranging terms we

get, λ1 ‖ pij∗ − x̄ ‖1 − λ1 ‖ pik − x̄ ‖2 = (η ◦α ◦Cϑ)(pik)−
(η ◦ α ◦ Cϑ)(pij∗). Since k 6= j∗, and j∗ is the smallest

index j such that pij∗ ∈ {pij}, therefore k > j. Thus

from the construction of the segment sets, and as the graph

G′ does not pass through the equilibrium x̄, we obtain

λ1 ‖ pij∗ − x̄ ‖2 > λ1 ‖ pik − x̄ ‖2 > 0. Therefore from the

above discussion, and as η(·) is positive by definition in (3),

we have (η ◦ α ◦ Cϑ)(pik) > (η ◦ α ◦ Cϑ)(pij∗). Since k is

any other index such that pik ∈ {pij}, k 6= j∗, the required

result is proved.

Assuming ties occur, Lemma 5.2 guarantees that if a point

pij ∈ Ai with the smallest index for j is selected as the

preferred goal node for a node p(i−1)k ∈ Ai−1, then the

quantity (η ◦ α ◦ Cϑ)(pij) is minimized. The next result

concerns the termination of Algorithm 1.

Theorem 5.3: Let the iteration count r ≥ 1, and there exist
a unique simple closed path f̄ from the set A0 to the set A0

formed by directed paths belonging to the graph G′ such that

f̂(·) is minimized. If there exists i such that p̃r,i ∈ f̄ where

p̃r,i ∈ Pr given in (11), then d2(Pr+1, Pr+2) < ǫ, where ǫ
is a positive constant chosen by the user of Algorithm 1.

Proof: Let there exist i such that a point p̃r,i ∈ Pr is on

the unique optimal path f̄ . Suppose the point p̃r,i+1 ∈ Pr is

chosen by the A∗ algorithm to go from p̃r,i ∈ Pr on the set

Ai to the set Ai+1 as shown in Algorithm 1. From [11] we

know that A∗ selects a point p̃r,i+1 ∈ Ai+1 such that the esti-

mated total cost f̂(·) to go from p̃r,i ∈ Ai to p̃r,i+1 ∈ Ai+1 is

minimized. But there exists only a single optimal path f̄ . This
implies that the point p̃r,i+1 ∈ f̄ . Similarly, each subsequent

point picked by the A∗ algorithm will lie on the optimal

path f̄ . Therefore let p̃r+1,0 ∈ A0 be the point belonging to

f̄ picked by A∗ at the end of iteration r. Now for iteration

r + 1 Algorithm 1 uses A∗ [11] to plan a path from the

point p̃r+1,0 ∈ A0 back around to the segment set A0, and

the resulting points on the path are stored as the sequence
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Pr+1 = {p̃r+1,0, p̃r+1,1, · · · , p̃r+1,N}. Since A∗ generates a

path such that f̂(·) is minimized, and there exists a unique

optimal path f̄ , all points p̃r+1,0, p̃r+1,1, · · · , p̃r+1,N ∈ f̄ .
Repeating similar arguments as above for the next iter-

ation gives, Pr+2 = {p̃r+2,0, p̃r+2,1, · · · , p̃r+2,N}, where

p̃r+2,0, p̃r+2,1, · · · , p̃r+2,N ∈ f̄ . Since there is a single

optimal path, the points p̃r+1,i ∈ Pr+1 are identical to the

points p̃r+2,i ∈ Pr+2. Thus d2(Pr+1, Pr+2) = 0 which is

less than any non-zero positive ǫ, completing the proof.

The above result implies; if the A∗ algorithm arrives at

a point on the optimal path as it searches for a least cost

path, and if there is only one such optimal path, then the

Algorithm 1 will quickly terminate. Based on the above

result, Proposition 5.4 provides conditions under which Al-

gorithm 1 provides an approximation of the smallest RFIS.

Source nodes satisfying Proposition 5.4 can shorten the time

required for Algorithm 1 to terminate.

Proposition 5.4: Suppose there exists a unique simple

closed path f̄ from set A0 to set A0 formed by directed paths

belonging to graph G′, such that f̂(·) is minimized. Suppose

g̃ satisfies Lemma 5.1. If there exists at least one segment

set Ai such that a unique point pij ∈ Ai also belongs to

f̄ , and point pij is the source node for Algorithm 1. Then

the points p̃r,i ∈ Pr produced by Algorithm 1 lie on the

boundary of the closest approximation of the smallest RFIS.

Proof: Since pij belongs to the unique optimal path

f̄ , and it is the source node, applying Theorem 5.3 tells us

that Algorithm 1 terminates. Since g̃ satisfies Lemma 5.1, the

constraints in (2) are not violated by points p̃r,i ∈ Pr. From

our formulation in (6)-(9), these points provide the optimal

solution to the problem of finding the smallest RFIS. But

from assumptions, only a single optimal path exists, hence

the points p̃r,i ∈ Pr produced by Algorithm 1 lie on the

boundary of the closest approximation of the smallest RFIS.

VI. SIMULATION

For simulations we use the following problem from [1].

ρ̇ = − sin(φ) (14)

φ̇ =

(
1−

ρ20
ρ2

)
cos(φ)− µ sin(φ) + δ(t). (15)

We set ǫ = 0.1, Tmax = 6.29s, and g̃ = 4.5036 × 1015 so

that Lemma 5.1 holds. Further, let ρ0 = 1, µ = 6.42, and the

disturbance used is δ(t) = δ0 sin(t) with δ0 = 0.15. Note
that these values agree with those used in [1]. The values

chosen for N,n, and h are 57, 100, and 0.1. Two tests were

then carried out using Algorithm 1, one with λ1 = 1, the
other with λ1 = 0.9. For both tests Algorithm 1 runs for

about 47s, and terminates in three iterations. Results obtained

are shown in Fig. 5. The square with blue circular markers

is the initial guess B. The curve with red square markers is

obtained for λ1 = 1, and the dashed purple curve is obtained

for λ1 = 0.9. Relaxing λ1 produces a slightly larger estimate.

The black dotted curves, which move from the initial guess

into the interior of the computed curves, show a few sample

trajectories. The sets obtained are verified to be invariant at

0.85 0.9 0.95 1 1.05 1.1 1.15
−0.06

−0.04
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0
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Fig. 5. The effects of using λ1 ∈ (0, 1] in Algorithm 1 with the curve
tracking problem given by equations (14)-(15).

least till time 10 × Tmax. Note that the shape of the curves

obtained in Fig. 5 exhibit features similar to the sets in [1].

VII. CONCLUSION

An algorithm is presented for finding the boundary of the

smallest robust forward invariant sets for two dimensional

systems with bounded additive perturbations. The conditions

under which the algorithm terminates and produces bound-

aries of an invariant set have been provided. The proposed

algorithm has been applied to the curve tracking problem in

[1], and the results have been verified to be invariant sets

whose shape appears to be in good agreement with [1].
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