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Abstract— We study a class of adaptive controllers for three
dimensional (3D) curve tracking under control uncertainty and
unknown control gains. Using robust forward invariance and a
Lyapunov-Krasovskii functional, we prove input-to-state stable
tracking and parameter identification under input delays and
a class of polygonal state constraints. This yields predictable
tolerance and safety bounds, and compensation of arbitrarily
long input delays in the important case where the delays only
occur in the speed measurements in the controls.

I. INTRODUCTION

This note gives 3D, input delayed analogs of our adaptive
robust curve tracking and parameter identification work [8],
which was limited to adaptive 2D dynamics without delays.
Our main tools are our recent strict Lyapunov function
and robust forward invariant approaches for nonadaptive
3D curve tracking systems from [9], combined with a new
construction of Lyapunov-Krasovskii functionals.

Our work is motivated by our recent deployment of a team
of marine robots in a search for pollution from the Deepwater
Horizon oil spill [12], which used our 2D curve tracking
methods from [6], [8]. The robotic curve tracking problem
has a rich literature [3], [14], [17] and leads to cooperative
control methods that track motion for multiple mobile robots;
see [18] for applications to ocean sensing. See also [2], [13],
[15], [16] for autonomous controls for drogues and robotic
fish. However, previously reported results for 3D curve
tracking based on nonstrict Lyapunov functions do not lead
to input-to-state stability (ISS) [4] under input delays, and
do not prove state constrained results that give predictable
tolerance and safety bounds under the unknown control
gains that prevail in real life marine robotic deployments
[12]. The ISS property is a key robustness condition that
quantifies the effects of uncertainty, by generalizing the usual
uniform global asymptotic stability (UGAS) decay estimate;
see Section V for precise definitions.

For the much simpler case of 2D adaptive dynamics, or
for 3D nonadaptive dynamics, our Lyapunov and robust
forward invariance set (RFIS) approaches from [6], [9]
involved decomposing the state space into a nested sequence
S1 ⊆ S2 ⊆ S3 ⊆ . . . of sets, and then finding maximal
disturbance sets Di such that for each index i, all trajectories
of the tracking dynamics starting in Si for all disturbances
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valued in Di remain in Si for all positive times. The
Di’s are maximal in the Hausdorff topology, so they give
predictable tolerance and safety bounds that say how large
the perturbations can be before the state constraint set Si
is violated. Another advantage of the RFIS method is that
under standard conditions, UGAS to any equilibrium on any
compact RFIS Si implies ISS on that set, because any strict
Lyapunov function has a bounded gradient on Si, and so is
also an ISS Lyapunov function. Finally, the RFIS approach
can handle input delays, by incorporating the effects of the
delays into the perturbations and using the sets Di to compute
maximum allowable delays [6]. This gives a new approach to
input delay compensation that is totally different from results
such as [10], [11], [20] (which compute maximum allowable
input delays that can be introduced into undelayed feedback
stabilizers while maintaining stability) or [1], [5] (where the
controllers are based on prediction or reduction but do not
ensure that state constraints can be satisfied).

Although this note owes a lot to [9], extending [6], [8], [9]
to 3D adaptive curve tracking and control gain identification
under delays is challenging. We review the background
from [9] in the next section. In Section III, we provide
the key extension of our RFIS results from [6], [8], [9]
to the 3D case, and in Section IV we explain how RFIS
can compensate for actuator uncertainty and input delays. In
Section V, we give our new adaptive ISS result for 3D curve
tracking under the polygonal state constraints from Section
III. Our new Lyapunov-Krasovskii functional construction
helps overcome the challenges of extending our 2D adaptive
results [8] to 3D. Our work is mainly a methodological
development, rather than a specific real-world application
or experiments. However, by combining parameter identi-
fication, state constraints, ISS, and delay compensation, our
certified performance results are more amenable to the 3D
curves in real time marine robotics applications, such as the
search for pollution from oil spills. This note is a summary
of results from [7], which has proofs of all results to follow.

II. REVIEW: NONADAPTIVE 3D CURVE TRACKING

We review the necessary background for the nonadaptive
case from [9], to keep our work self contained. Trajectories
traced by a pair of particles moving in 3D space were studied
in [3], [19]. One particle moves freely, so we call it the free
particle. The other is confined to a specified 3D curve. The
second particle has locally the shortest distance to the free
particle, so we call the second particle the closest point.

Let r1 denote the position of the second particle (at the
closest point), x1 the unit tangent vector to the curve at the
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point r1, y1 a unit normal vector, and z1 a binormal vector.
The velocity of the point is in the direction of x1. Let r2
denote the position of the free particle moving at unit speed,
x2 the unit tangent vector to the trajectory of its moving
center, y2 a corresponding unit normal vector, and z2 = x2×
y2. With the speed defined by ds

dt = α , the time evolutions
of the point on the curve and the closest point are [19]

ṙ1 = αx1
ẋ1 = ακny1 +ακgz1
ẏ1 = −ακnx1
ż1 = −ακgx1,

ṙ2 = x2
ẋ2 = uy2 + vz2
ẏ2 = −ux2
ż2 = −vx2,

(1)

where κn is the normal curvature, κg is the geodesic curva-
ture, and u and v are steering controls we will choose. We
assume that both curvatures are C1, bounded and nonpositive
valued. The control objective is for |r2− r1| to converge to
a desired positive constant, and to control x2 to be aligned
with x1, meaning x1 ·x2 =±1. The state space will be chosen
to be a forward invariant set where α is always positive.

We choose the controls u= a1(x1 ·y2)+a2(y1 ·y2)+a3(z1 ·
y2) and v= a1(x1 ·z2)+a2(y1 ·z2)+a3(z1 ·z2) where the ai’s
are functions of the variables ρ1 = (r2− r1) · y1 and ρ2 =
(r2−r1) ·z1 and the shape variables ϕ = x1 ·x2, β = y1 ·x2,
and γ = z1 ·x2 and a steering constant µ > 0, namely,

a1 = µ, a2 =−h′1(ρ1)+
ακn

ϕ
and a3 =−h′2(ρ2)+

ακg
ϕ

(2)

and where for simplicity we take the penalty functions

hi(ρi) =

 c̄
(

ρi +
ρ2

ci
ρi
−2ρci

)
, ρi ∈ (0,ρci)

c̄
ρci

(ρi−ρci)
2, ρi ≥ ρci

(3)

for i = 1,2 for any tuning constant c̄ > 0 (but see [9]
for analogs for more general penalty functions). Then [7]
α = ϕ/(1−κnρ1−κgρ2). The ρci’s are any desired positive
values for ρ1 and ρ2, so our alignment objective is to achieve
UGAS to the equilibrium (ρc1,ρc2,1,0,0) from all initial
states in Z = {(ρ1,ρ2,ϕ,β ,γ)∈ (0,+∞)2×S2 : ϕ > 0}. Note
that h′i(ρi)> 0 (resp., < 0) if ρi > ρci (resp., < ρci).

Finally, taking the spherical coordinates (ϕ,β ,γ) =(
cos(ζ )cos(θ),−sin(ζ )cos(θ),sin(θ)

)
gives [9]

ρ̇1 = −sin(ζ )cos(θ)
ζ̇ = − 1

cos2(θ)

[
ακn sin2(θ)−h′1(ρ1)cos(ζ )cos(θ)

+ακg sin(θ)sin(ζ )cos(θ)+µ sin(ζ )cos(θ)]
ρ̇2 = sin(θ)

θ̇ = ακg
sin2(ζ )
cos(ζ ) −h′2(ρ2)cos(θ)−µ cos(ζ )sin(θ)

+
(
−h′1(ρ1)+

ακn
cos(θ)cos(ζ )

)
sin(ζ )sin(θ)

(4)

on the state space

X = (0,+∞)×(−π/2,π/2)×(0,+∞)×(−π/2,π/2), (5)

and our UGAS objective will be realized if we prove that (4)
is UGAS to its equilibrium E = (ρc1,0,ρc2,0) on X . For
brevity, we denote the state of (4) by Y = (ρ1,ζ ,ρ2,θ).

While it is possible to prove UGAS of (4) to
E using the nonstrict Lyapunov function V (Y ) =
− ln(cos(θ)) − ln(cos(ζ )) + h1(ρ1) + h2(ρ2) on X and
LaSalle invariance, a key result from [9] is a strict
Lyapunov function U for (4), which uses the functions

λ (q) = λ0(q,ρc1) + λ0(q,ρc2) + 2c̄/min{ρc1,ρc2}, Γ(q) =
Γ0(q,ρc1)+Γ0(q,ρc2)+4c̄q/min{ρc1,ρc2}, and

L (q) = 3
µ

[
Γ(q)+1

](
1+ ||κn||∞ + ||κg||∞

)
+2
[

1
µ

λ (q)+Γ′(q)+1
]
, where

λ0(q,ρci) = 2
c̄2ρ4

ci
(q+2c̄ρci)

3 +1+0.5µ2 +µ

and Γ0(q,ρci) = 18c̄
ρci

q+
(

2
ρci

)4(
9
c̄2

)
q4 for i = 1,2 .

The strict Lyapunov function construction from [9] is:
Theorem 1: The function

U(Y ) = −h′1(ρ1)sin(ζ )cos(θ)

+h′2(ρ2)sin(θ)+
∫ V (Y )

0 L (q)dq
(6)

is a strict Lyapunov function for (4) on its state space (5).
Therefore, (4) is UGAS to E = (ρc1,0,ρc2,0) on X . �

The proof of Theorem 1 shows that along all trajectories
of (4) in X , we have U ≥V and U̇ ≤−0.5[h′1(ρ1)cos(ζ )]2−
sin2(ζ )−0.5[h′2(ρ2)cos(θ)]2− sin2(θ). The second inequal-
ity is a strict decay property, because its right side is only
zero at E . This strictness property will be key for building
our adaptive controls and Lyapunov Krasovskii functional
for the more difficult input delayed perturbed adaptive 3D
tracking problem. The other key ingredient is the following
nontrivial extension of the nonadaptive RFIS constructions
from [9].

III. 3D ADAPTIVE RFIS
The rest of this paper summarizes some new results from

[7]. In practice, the control gains might not be known.
Instead, only an interval (gmin,gmax) containing the gains, with
known constant positive endpoints, may be available. We
model this by replacing u and v in (1) by Gu/Ĝ and Gv/Ĝ
respectively, where G ∈ (gmin,gmax) is an unknown constant,
and where Ĝ is an estimate of G. The Ĝ dynamics will have
the state space (gmin,gmax) and will be such that Ĝ(t)→ G
for all initial states Ĝ(0) ∈ (gmin,gmax). Equivalently, G is
the unknown control gain, and we use the scaled controllers
unew = u/Ĝ and vnew = v/Ĝ, where u and v are defined
in terms of the weights (2) exactly as above. Then similar
calculations to the ones in the last section except with the
new controls give the augmented 3D adaptive curve tracking
system [7]

ρ̇1 = −sin(ζ )cos(θ)

ζ̇ = − cos(ζ )κn
1−κnρ1−κgρ2

1
cos(θ)

(
G
Ĝ
− cos2(θ)

)
+δ1

−ακg sin(θ)sin(ζ )
cos(θ) + G

Ĝ
h′1(ρ1)cos(ζ )

cos(θ) − G
Ĝ

µ sin(ζ )
cos(θ)

ρ̇2 = sin(θ)

θ̇ = −κg cos2(ζ )cos(θ)
1−κnρ1−κgρ2

+ G
Ĝ

HA(Y )sin(ζ )sin(θ)

+
[

G
Ĝ

HB(Y )cos(θ)
]
− Gµ cos(ζ )sin(θ)

Ĝ
+δ2

˙̂G = (gmax− Ĝ)(Ĝ−gmin)
1
Ĝ

(
∂U
∂ζ

A1 +
∂U
∂θ

A2

)
(7)

on the enlarged state space Xa =X × (gmin,gmax), where κn
and κg are functions of Y , and where we use the functions

HA(Y ) = κn
1−κnρ1−κgρ2

−h′1(ρ1) and

HB(Y ) =
κg

1−κnρ1−κgρ2
−h′2(ρ2)

(8)
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and A1(Y ) = −(HA(Y )cos(ζ ) + µ sin(ζ ))/cos(θ) and
A2(Y ) = −µ cos(ζ )sin(θ) + HA(Y )sin(ζ )sin(θ) +
HB(Y )cos(θ) on the state space (5) and the δi’s are
unknown measurable essentially bounded real valued
functions representing uncertainties (which we later use
to capture the effects of delays or control uncertainty).
Although update laws such as our dynamics for Ĝ have
appeared in the literature, to the best of our knowledge,
none of the existing results can cover the ISS and state
constraint results for (7) that we consider here.

We must restrict the sup norms of the δi’s to have
forward invariance of the state space Xa of (7). To
see why this restriction is needed, take the initial
state (ρ1(0),ζ (0),ρ2(0),θ(0), Ĝ(0)) = (2ρc1,0,2ρc2,0,G) ∈
Xa and the constant disturbance components δ1(t) = 0
and δ2(t) = −||κg||∞ − gmax

(
h′1(3ρc1) + ||κn||∞ + µ

)
/gmin −

π/(2min{ρc1,ρc2}), where || · ||∞ is the sup norm. Since
each trajectory of (7) satisfies |ρ̇i(t)| ≤ 1 for all t ≥ 0,
we have ρi(t) ∈ [ρci,3ρci] and so also h′i(ρi(t)) ≥ 0 for all
t ∈ [0,min{ρc1,ρc2}] for i = 1,2. Since we assumed that κg
is nonpositive valued and h′′1(ρ1)≥ 0 for all ρ1 > 0, the term
in brackets in (7) is nonpositive on Xa, so the corresponding
trajectory of (7) satisfies θ̇(t) ≤ ||κg||∞ + gmax

(
h′1(3ρc1) +

||κn||∞ + µ
)
/gmin + δ2(t) = −π/(2min{ρc1,ρc2}) for all t ∈

[0,min{ρc1,ρc2}] for which the trajectory is in Xa. Since
θ(0) = 0, it follows that θ(t) reaches −π/2 by time t =
min{ρc1,ρc2}, so the trajectory exits from Xa.

This motivates our search for robustly forwardly invariant
sets and corresponding maximal perturbation sets for (7).
By robust forward invariance of a subset S of the state
space of a system, with perturbations valued in a set D , we
mean that all trajectories of the system starting in S for all
perturbations valued in D stay in S for all future times. In
[9] we found robustly forwardly invariant sets with maximal
perturbation sets for the nonadaptive case, but they do not
apply to (7). The adaptive robustly forwardly invariant sets
from [8] only apply in 2D, and cannot compensate arbitrarily
long input delays or arbitrarily large perturbations as we will
do below. Instead, we use the following RFIS construction.

Fig. 1. Hexagononal Regions H1(ρ∗1, ζ̄ ,K1) and H2(ρ∗2, θ̄ ,K2) for Robustly
Forwardly Invariant Set H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)

Take any quadruple (ρ∗1,ρ∗2,K1,K2) of positive con-
stants, with ρ∗i ∈ (0,ρci) for i = 1,2. Fix any constants
ζ̄ ∈ (0,π/2) and θ̄ ∈ (0,π/2), and set µ ] = µgmin/gmax.
Let H1(ρ∗1, ζ̄ ,K1) be the closed set in the (ρ1,ζ ) plane
whose boundary is the hexagon having the vertices A =
(ρ∗1,0), B = (ρ∗1 + ζ̄/µ ], ζ̄ ), C = (ρ∗1 + 2ζ̄/µ ] + K1, ζ̄ ),
D = (ρ∗1 +2ζ̄/µ ]+K1,0), E = (ρ∗1 + ζ̄/µ ]+K1,−ζ̄ ), and

F = (ρ∗1,−ζ̄ ). Its legs AB and DE have slope µ ], and its
other legs are horizontal or vertical. Let H2(ρ∗2, θ̄ ,K2) be
the closed set in the (ρ2,θ) plane whose boundary is the
hexagon with the vertices A′ = (ρ∗2,0), B′ = (ρ∗2, θ̄), C′ =
(ρ∗2+ θ̄/(µ ] cos(θ̄))+K2, θ̄), D′ = (ρ∗2+2θ̄/(µ ] cos(θ̄))+
K2,0), E ′ = (ρ∗2 + 2θ̄/(µ ] cos(θ̄)) + K2,−θ̄), and F ′ =
(ρ∗2+ θ̄/(µ ] cos(θ̄)),−θ̄). Its legs A′F ′ and C′D′ have slope
−cos(θ̄)µ ], and its other legs are horizontal or vertical. See
Figure 1. These resemble the hexagons for the nonadaptive
case in [9], but are different because we used the bounds
on the control gain to tilt the slopes of some of the legs.
To specify the hexagon parameters, we first write the Y
subdynamics of (7) as

ρ̇1 = −sin(ζ )cos(θ)
ζ̇ = QA

1 (Y, Ĝ)+δ1
ρ̇2 = sin(θ)
θ̇ = QA

2 (Y, Ĝ)+δ2 .

(9)

so QA
2 (Y, Ĝ) is the sum of the first four terms on the right

side of θ̇ in (7) and similarly for ζ̇ . Given any constants
Mi > 0 for i = 1,2, we choose the hexagon parameters to
satisfy the requirements from:

Lemma 1: There are constants ρ̄∗1 ∈ (0,ρc1) and K̄1 >
ρc1 such that for each pair (ρ∗1,K1) ∈ (0, ρ̄∗1)× (K̄1,+∞),
there exist constants µ > 0, ρ∗2 ∈ (0,ρc2) and K2 > 0 such
that the following four conditions hold: (C1) QA

1 (Y, Ĝ) +
µ ] sin(ζ )cos(θ)> M1 for all (ρ1,ζ ) ∈ ED and all (ρ2,θ) ∈
H2(ρ∗2, θ̄ ,K2). Also, QA

1 (Y, Ĝ) + µ ] sin(ζ )cos(θ) < −M1
for all (ρ1,ζ ) ∈ AB and all (ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2). (C2)
QA

1 (Y, Ĝ) > M1 for all (ρ1,ζ ) ∈ FE and all (ρ2,θ) ∈
H2(ρ∗2, θ̄ ,K2). Also, QA

1 (Y, Ĝ) < −M1 for all (ρ1,ζ ) ∈
BC and all (ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2). (C3) QA

2 (Y, Ĝ) +
µ ] cos(ζ̄ )sin(θ)> M2 for all (ρ2,θ)∈ A′F ′ and all (ρ1,ζ )∈
H1(ρ∗1, ζ̄ ,K1). Also, QA

2 (Y, Ĝ) + µ ] cos(ζ̄ )sin(θ) < −M2
for all (ρ2,θ) ∈ C′D′ and all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1). (C4)
QA

2 (Y, Ĝ) > M2 for all (ρ2,θ) ∈ F ′E ′ and all (ρ1,ζ ) ∈
H1(ρ∗1, ζ̄ ,K1). Also, QA

2 (Y, Ĝ)<−M2 for all (ρ2,θ) ∈ B′C′

and all (ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1). �
See [7] for the proof of Lemma 1. We also set

∆a = minĜ{|QA
1 (Y, Ĝ) + µ ] sin(ζ )cos(θ)| : (ρ1,ζ ) ∈

AB∪ED,(ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2)}, ∆b = minĜ{|QA
1 (Y, Ĝ)| :

(ρ1,ζ ) ∈ FE ∪ BC,(ρ2,θ) ∈ H2(ρ∗2, θ̄ ,K2)}, ∆c =
minĜ{|QA

2 (Y, Ĝ) + µ ] cos(ζ̄ )sin(θ)| : (ρ2,θ) ∈ C′D′ ∪
A′F ′,(ρ1,ζ ) ∈H1(ρ∗1, ζ̄ ,K1)}, and ∆d = minĜ{|QA

2 (Y, Ĝ)| :
(ρ2,θ) ∈ B′C′ ∪ F ′E ′,(ρ1,ζ ) ∈ H1(ρ∗1, ζ̄ ,K1)}, where the
subscript Ĝ means that we are also minimizing over all
Ĝ ∈ [gmin,gmax]. Then conditions (C1)-(C4) of Lemma 1
imply that min{∆a,∆b} ≥M1 and min{∆c,∆d} ≥M2 hold.

Next notice that since there is no perturbation in the
update law for Ĝ, forward invariance of H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2)× (gmin,gmax) for (7) for a given perturbation
set D is equivalent to forward invariance of H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2) for (9) for the same perturbation set for each
solution Ĝ of the update law in (7). Hence, to prove our
robust forward invariant results, we focus on the dynamics
(9). In terms of the constants ∆̄ζ = min{∆a,∆b} and ∆̄θ =
min{∆c,∆d}, we have the following consequence from [7]:
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Theorem 2: Let (M1,M2, ζ̄ , θ̄ ,ρ∗1,ρ∗2,K1,K2,µ) be such
that the requirements (C1)-(C4) from Lemma 1 hold. Then:
(a) For each C1 solution Ĝ : [0,+∞)→ (gmin,gmax) of the
update law and all constants δ∗1 ∈ (0, ∆̄ζ ) and δ∗2 ∈ (0, ∆̄θ ),
the set H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) is robustly forwardly
invariant for (9) with the disturbance set D = [−δ∗1,δ∗1]×
[−δ∗2,δ∗2]. (b) For each constant δ+ > ∆̄ζ (resp., > ∆̄θ ), there
exist a point Y ∈ ∂ (H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)) and a
solution Ĝ such that the trajectory for (9) starting at Y for
one of the constant perturbations ±(δ+,0) (resp., ±(0,δ+))
immediately exits H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2). �

Remark 1: As an analog to the 2D case from [6], our
conditions can be satisfied by a nested increasing sequence
of hexagonal product regions that fill X = (0,+∞) ×
(−π/2,π/2)× (0,+∞)× (−π/2,π/2). This can be done by
picking ζ̄ and θ̄ to be close enough to π/2, reducing the
ρ∗i’s, and finally increasing the Ki’s and µ so the hexagons
converge to bigger and bigger rectangles. Therefore, for any
given compact subset S0 ⊆X , we can choose our hexagon
parameters such that S0 ⊆ H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2),
and then all trajectories of the Y dynamics starting in S0
stay in H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) under the maximum
perturbation box of the theorem. This can ensure predictable
tolerance and safety bounds for all trajectories starting in
S0, without imposing any regularity at the boundary of S0.
We cannot replace our hexagons with arbitrary bounded
polygons, such as boxes [7].

Remark 2: Part (b) of Theorem 2 gives maximality of
the bounds ∆̄ζ and ∆̄θ for maintaining the robust forward
invariance, which is analogous to the maximal disturbance
bound in [6], [8] for maintaining robust forward invariance
in 2D tracking. On the other hand, given any desired distur-
bance bound M̄, we can make H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)
robustly forwardly invariant under disturbances that are
bounded by M̄, so we can compensate arbitrarily large
perturbations. This follows because Lemma 1 ensures that we
can tune the hexagon parameters to make the constants from
∆a, ∆b, ∆c, and ∆d as large as we want. This contrasts with
the 2D adaptive result from [8], where the penalty functions
in the control have the usual form h(ρ) = c̄(ρ +ρ2

c /ρ−2ρc)
from [19], and where there was a finite upper bound on
the allowable perturbations, so the results of this section are
stronger than [8] even in the 2D case.

IV. DELAY COMPENSATION VIA RFIS

The δi’s in (7) represent controller uncertainty, and our
analysis leads to upper bounds on the allowable actuator
errors. They can capture the effects of delays in the Y =
(ρ1,ζ ,ρ2,θ) values entering our controls, and then we can
compute bounds on the allowable delays that give robust
forward invariance. We found these delay bounds in [9] for
the 3D nonadaptive case. In this section, we find the delays
bounds in the more challenging adaptive case, which will
give a way to compensate arbitrarily long input delays.

Let || f ||I denote the supremum of any function f on any
set I ⊆ domain( f ). Let h1, h2, ζ̄ , θ̄ , µ , δ∗ = (δ∗1,δ∗2), and
H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2) satisfy the requirements from

Theorem 2. Throughout what follows, all upper bounds are
over points or trajectories in this product set unless otherwise
indicated, and we assume that that there are no delays in
the update law and that κn and κg are negative constants;
see [7] for more general cases. Then our controls are the
constant a1 = µ , and the nonconstant controls a2 and a3 in
(2), which are functions of ρ = (ρ1,ρ2). We assume that
there is a constant delay τi > 0 in the values of ρ in ai for
i = 2,3. Choosing the constants

M2 =
1

gmin

(
||h′′1 ||[ρ∗1,ρ∗1+K1+2]+κ2

n + |κnκg|
)

and

M3 =
1

gmin

(
||h′′2 ||[ρ∗2,ρ∗2+K2+2]+κ2

g + |κnκg|
) (10)

gives |ai(ρ(t− τi))−ai(ρ(t))| ≤Miτigmin for i = 2,3 (using
the fact that the ρ̇i’s are bounded by 1 and the Mean Value
Theorem, where the terms involving the h′′i ’s capture the
effects of the terms −h′i(ρi), and assuming without loss of
generality that µ] ≥ ζ̄ and µ] cos(θ̄) ≥ θ̄ ). We write the
undelayed adaptive system (7) as

Ẏ ] = F (Y ])+
(
0,δ1,0,δ2,0

)> (11)

for a suitable function F , where Y ] = (ρ1,ζ ,ρ2,θ , Ĝ). On
the other hand, replacing the controls ai in (2) by the delayed
versions ai(ρ(t − τi)) for i = 2,3 and using the spherical
change of coordinates as above, we get the perturbed adap-
tive input delayed system

Ẏ ] = F (Y ])+
(
0,Ξζ (Y

]
t )+ δ̃1,0,Ξθ (Y

]
t )+ δ̃2,0

)>
, (12)

where δ̃1 and δ̃2 represent additive uncertainties, Y ]
t (s) =

Y ](s+ t) for −max{τ2,τ3} ≤ s≤ 0, and

Ξζ (Y
]

t ) =−
cos(ζ )G
cos(θ)Ĝ

[
a2(ρ(t− τ2))−a2(ρ(t))

]
Ξθ (Y

]
t ) =

G
Ĝ

(
sin(θ)sin(ζ )

[
a2(ρ(t− τ2))−a2(ρ(t))

]
+cos(θ)

[
a3(ρ(t− τ3))−a3(ρ(t))

])
,

(13)

where we used the fact that Ĝ in (7) is valued in
(gmin,gmax) ⊆ (0,∞) and omit the dependence of θ

and ζ on t. This gives |Ξζ (Y
]

t )| ≤ GM2τ2/cos(θ̄)
and |Ξθ (Y

]
t )| ≤ G(sin(θ̄)sin(ζ̄ )M2τ2 + M3τ3) on

H1(ρ∗1, ζ̄ ,K1) × H2(ρ∗2, θ̄ ,K2). Also, (12) is the
special case of (11) with the choices (δ1(t),δ2(t)) =
(Ξζ (Y

]
t ) + δ̃1(t),Ξθ (Y

]
t ) + δ̃2(t)), and they satisfy

||δi||∞ ≤ ||δ̃i||∞ +max{τ2,τ3}GM4 for i = 1,2, where

M4 =
(

1
cos(θ̄) + sin(ζ̄ )sin(θ̄)

)
M2 +M3. (14)

Hence, by Theorem 2, H1(ρ∗1, ζ̄ ,K1) × H2(ρ∗2, θ̄ ,K2) is
robustly forward invariant for (12) for all (δ̃1, δ̃2)’s satisfying
||δ̃i||∞ +max{τ2,τ3}GM4 < δ∗i for i = 1,2. This shows [7]:

Theorem 3: Let H1(ρ∗1, ζ̄ ,K1)× H2(ρ∗2, θ̄ ,K2), µ , δ∗1,
and δ∗2 satisfy the above requirements, and the curvatures
κn and κg be constant and negative. Choose any constants
δ∗∗i > 0 and any positive constants τ2 and τ3 such that

δ∗∗i ≤ δ∗i−max{τ2,τ3}GM4 for i = 1,2 . (15)

Then H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)× (gmin,gmax) is robustly
forwardly invariant for the adaptive input delayed curve
tracking dynamics (12) for all disturbances (δ̃1, δ̃2) valued
in D = [−δ∗∗1,δ∗∗1]× [−δ∗∗2,δ∗∗2]. �

Formula (15) requires subtracting terms from the δ∗i’s to
get perturbation bounds that hold under the input delays. This
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reduces the admissible disturbance set. On the other hand,
we can choose the hexagon parameters to get arbitrarily
small reductions in the δ∗i’s and compensate arbitrarily long
input delays, as follows. Assume for simplicity that the
input delays only occur in the speed measurements α =
ϕ/(1− κnρ1 − κgρ2) in the controls, and that κn and κg
are negative constants. This produces the perturbed delayed
adaptive system (12) as before, except with a2(ρ(t−τ2)) and
a3(ρ(t− τ3)) replaced by

ā2(Yt) =

−h′1(ρ1(t))+
κn cos(ζ (t−τ2))cos(θ(t−τ2))

cos(ζ (t))cos(θ(t))(1−κnρ1(t−τ2)−κgρ2(t−τ2))

ā3(Yt) =

−h′2(ρ2(t))+
κg cos(ζ (t−τ3))cos(θ(t−τ3))

cos(ζ (t))cos(θ(t))(1−κnρ1(t−τ3)−κgρ2(t−τ3))

(16)

respectively. With this replacement, the new terms in (12)
capturing the inputs delays have the bounds

|Ξζ (Y
]

t )| ≤
G(τ2+1)B(κn,κg,ζ̄ ,θ̄)

cos(θ̄)gmin
and

|Ξθ (Y
]

t )| ≤
2G(max{τ2,τ3}+1)B(κn,κg,ζ̄ ,θ̄)

gmin
, where

B(κn,κg, ζ̄ , θ̄) =
2max{|κn|,|κg|}+max{κ2

n ,κ
2
g }+κnκg

cos(ζ̄ )cos(θ̄)

(17)

because the terms in the formulas (10) for M2 and M3
involving the h′′i ’s are no longer needed and |ρ̇i| ≤ 1 ev-
erywhere. Then we reason similarly to the above arguments
and replace the upper bound (15) on the allowable δ̃i’s by

δ new
∗∗i = δ∗i−

[
2G(max{τ2,τ3}+1)B(κn,κg,ζ̄ ,θ̄)

cos(θ̄)gmin

]
(18)

for i = 1,2. It follows that S = H1(ρ∗1, ζ̄ ,K1) ×
H2(ρ∗2, θ̄ ,K2) × (gmin,gmax) is robustly forwardly invari-
ant for (12) when its disturbances (δ̃1, δ̃2) are valued in
[−δ new

∗∗1 ,δ
new
∗∗1 ]× [−δ new

∗∗2 ,δ
new
∗∗2 ], if the requirements of The-

orem 2 hold. Moreover, for any constant ε ∈ (0,1), we get
δ new
∗∗i ≥ (1− ε)δ∗i for i = 1,2 when

2max{|κn|, |κg|}+2max{κ2
n ,κ

2
g}

≤ ε min{δ∗1,δ∗2}cos(ζ̄ )cos2(θ̄)gmin
2gmax(max{τ2,τ3}+1) ,

(19)

because (19) implies that the term in brackets in (18) has the
bound εδ∗i for i = 1,2.

This gives the following tracking algorithm for any pos-
itive constant delays τ2 and τ3 in the speed measurement
α and any negative constant choices of κn and κg. First,
pick any constants ζ̄ ∈ (0,π/2), θ̄ ∈ (0,π/2), and ε ∈ (0,1).
Then, select the hexagon parameters that make min{δ∗1,δ∗2}
big enough for (19) to hold. This is possible by Remark
1. We conclude that S = H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)×
(gmin,gmax) is robustly forwardly invariant for (12) with dis-
turbances (δ̃1, δ̃2) valued in Dε = [−(1−ε)δ∗1,(1−ε)δ∗1]×
[−(1− ε)δ∗2,(1− ε)δ∗2]. This shows that we can allow
arbitrarily long time delays with arbitrarily small reductions
in the set of admissible values for the control disturbances.

V. ISS FOR DELAYED ADAPTIVE SYSTEM

We now leverage our RFIS results to prove our ISS result.
We first recall some relevant definitions. For any constant
τ ≥ 0 and any subset S of a Euclidean space, let C[−τ,0](S )
denote the set of all continuous functions φ : [−τ,0]→S .

We use the standard classes K∞ and K L of comparison
functions [4]. Consider any subset S of any Euclidean
space and any point E0 ∈ S . A modulus with respect to
(E0,S ) is any function Λ : S → [0,+∞) that is zero at E0,
positive at all other points in S , and radially unbounded
in the following sense: For each constant K > 0, there is
a constant δK > 0 such that Λ(x) ≥ K for all x ∈ S that
satisfy dist(x,boundary(S )) ≤ δK or |x|E0 ≥ 1/δK . Here
|x|E0 = |x−E0| is the distance to the equilibrium.

Consider any system Ż(t) = G (t,Zt ,δ (t)) with a constant
delay τ ≥ 0, the state space S , measurable essentially
bounded disturbances δ valued in some subset D of a
Euclidean space, and an equilibrium E0 ∈ S (meaning
G (t,E0,0) = 0 for all t ≥ 0, where we also use E0 to mean
the function in C[−τ,0](S ) that is identically equal to E0).
Here Zt(r) = Z(t + r) for −τ ≤ r ≤ 0, and we assume that
all dynamics have a well defined flow map. The system
is called input-to-state stable (ISS) on S (for D and E0)
provided there are functions β ∈ K L and γ ∈ K∞ and
a modulus Λ with respect to (E0,S ) such that |Z(t)|E0 ≤
β (||Λ(Z0(r))||[−τ,0], t) + γ(||δ ||[0,t]) for all initial functions
Z0 ∈ C[−τ,0](S ), all disturbances δ valued in D , all t ≥ 0,
and the trajectory Z(t) for the system for δ starting at Z0.

Recall from Theorem 3 that we must restrict the input
delays to get robust forward invariance. To find delay bounds
that give ISS results on each of our product sets S =
H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)× (gmin,gmax), we set

M̄ = g2
max

(
2sin2(ζ̄ )sin2(θ̄)+ 1

cos2(θ̄)

)
M 2

2 +2g2
maxM

2
3

and τ̄ = c̄1 c̄2
2
√

M̄L

(20)

where the Mi’s are from (10), the constant L > 0 satisfies
|((d/dζ )U(Y ),(d/dθ)U(Y ))| ≤ L|Y |E on S for our func-
tion U from (6), ζ̄ ∈ (0,π/2) and θ̄ ∈ (0,π/2) are from our
definition of H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2), and c̄1 and c̄2
are chosen such that U̇(Y ) ≤ −c̄1U(Y ) and c̄2|Y |2E ≤U(Y )
hold along all trajectories of the unperturbed system on S .
See [7] for the proof that such c̄i’s exist. In [7], we prove:

Theorem 4: Let H1(ρ∗1, ζ̄ ,K1) × H2(ρ∗2, θ̄ ,K2), τ2 ∈
(0, τ̄), τ3 ∈ (0, τ̄), δ∗∗1, and δ∗∗2 satisfy the requirements from
Theorem 3. Then the perturbed adaptive 3D tracking dy-
namics (12) is ISS on S = H1(ρ∗1, ζ̄ ,K1)×H2(ρ∗2, θ̄ ,K2)×
(gmin,gmax) for the disturbance set D = [−δ∗∗1,δ∗∗1] ×
[−δ∗∗2,δ∗∗2] and the equilibrium E a = (ρc1,0,ρc2,0,G). �

Sketch of Proof: Take the function

V ]](Yt , Ĝt) =

V ](Y (t), Ĝ(t))+(J̄+ µ̄)
∫ t

t−max{τ2,τ3}
∫ t

s |Y (r)|2E drds,
(21)

where

V ](Y, Ĝ) = R
(

U
(
Y )+

∫ Ĝ
G

`−G
(`−gmin)(gmax−`)d`

)
+(Ĝ−G)2 +(ζ −θ)(Ĝ−G),

J̄ = M̄
(

RL2

c̄1 c̄2
+ 2gmax

c0+c1

)
max{τ2,τ3}

(22)

the constant µ̄ > 0 is such that (J̄ + µ̄)max{τ2,τ3} <
Rc̄1c̄2/4, the positive constants co and c1 can be cho-
sen such that there exists a constant Ḡ > 0 such that
max{

∣∣ ˙̂G(Y, Ĝ)
∣∣, |QA

1 (Y,G)|, |QA
2 (Y,G)|} ≤ Ḡ|Y |E , A1(Y )≥
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co − Ḡ|Y |E and A2(Y ) ≤ −c1 + Ḡ|Y |E hold along all tra-
jectories of the system contained in S = H1(ρ∗1, ζ̄ ,K1)×
H2(ρ∗2, θ̄ ,K2)× (gmin,gmax) (where QA

1 and QA
2 are from

(9)), and R > 0 is any constant such that

R≥ 2
c̄2

max
{

1, H̄
c̄1
, c0+c1

2c̄1gmax

}
, where

H̄ = 2Ḡ+ 2gmaxḠ2

c0+c1

(
4+ 2gmax

gmin

)2 (23)

and such that

max{τ2,τ3} <

√
Rc̄2

1c̄2
2(c0 + c1)

4M̄[RL2(c0 + c1)+2gmaxc̄1c̄2]
. (24)

Such an R exists because the limit of the right side
of (24) as R → +∞ is our bound τ̄ from (20). The
function V ] admits a function γ̄ ∈ K∞ such that V̇ ] ≤
−0.5α[(Y ]) + J̄

∫ t
t−max{τ2 ,τ3}

|Y (r)|2E dr + γ̄(|δ̃ |) along all tra-
jectories of (12) for all disturbances valued in D , where
α[(Y ]) = 0.5Rc̄1c̄2|Y |2E + (Ĝ−G)2(c0 + c1)/[2gmax]. Then
V ]] is a Lyapunov-Krasovskii functional for (12) when the
disturbance is zero, and it admits a positive definite function
α0 such that V̇ ]] ≤−α0(V ]])+ γ̄(|δ̃ |) along all trajectories of
(12) for all disturbances δ valued in D . This is weaker than
an ISS Lyapunov-Krasovskii decay estimate because V ]] is
unbounded on the bounded set S . However, we can choose
α0 such that lims→+∞ α0(s) > 0, so this leads to the ISS
result. See [7] for more details. �

Remark 3: We can relax our conditions on κn and κg to
the requirements that they are bounded, C1, nowhere zero,
and time invariant, and this makes our approach amenable to
a broader class of 3D curves. This can be done by restricting
the state space so that the denominator 1−κnρ1−κgρ2 of
α is positive throughout the state space. See [7] for more
details. The work [10] gave a scaling method for proving
UGAS under arbitrarily long input delays. We can use a
similar approach to prove ISS for (12), under arbitrarily long
input delays when the delays only enter α and the curvatures
are negative constants of small enough absolute value. This
is because if the delayed control components are ā2 and ā3
as defined in (16), then we can replace M̄ from (20) by a new
formula M̄a that converges to 0 when κn→ 0− and κg→ 0−,
since the terms involving the h′′i ’s in the formulas for M2 and
M3 in (10) are no longer necessary. Moreover, the constants
c̄1, c̄2, and L can be chosen independently of κn and κg if the
curvatures lie in some known compact interval. We conclude
that the new delay bound τ̄ = c̄1c̄2/(2

√
M̄aL) converges to

+∞ as κn→ 0− and κg→ 0−, so there is a tradeoff between
the maximal allowable input delays and the magnitudes of
the curvatures [7]. �

VI. CONCLUSIONS

Curve tracking for marine robots under input delays, actu-
ator uncertainty, unknown control gains, and state constraints
is challenging. We obtained new adaptive ISS tracking and
parameter identification results for 3D curve tracking using
a new Lyapunov-Krasovskii functional design, and a robust
forward invariance approach that leads to predictable toler-
ance and safety bounds under polygonal state constraints.
By tuning parameters for the polygons, we proved robust

forward invariance under arbitrarily long input delays in
an important case where the delays only enter the speed
measurements. This is totally different from prediction, re-
duction, and other delay compensation approaches. Tuning
the parameters also leads to ISS under arbitrarily large
perturbations. We believe that our robust forward invariance
approach may also prove useful in other applications, such
as coordinated tracking by teams of marine robots.
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