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Abstract— In this paper we model the controlled Lagrangian
particle tracking (CLPT) error for marine vehicles moving in an
ocean flow field, with guidance from ocean models. We linearize
the error about the nominal modeled trajectory of the system
and derive an exact expression for the linearized error in the
case of constant modeled ocean flow. We show that this simple
error model can be used to estimate error in predicted positions
of autonomous vehicles, using data from a field deployment of
autonomous underwater gliders in Long Bay, SC, in winter
2012.

I. INTRODUCTION

In recent years, autonomous underwater vehicles (AUVs)
have emerged as an exciting technology in the field of
oceanographic research. Traditional sensor platforms com-
monly used in oceanography include moored arrays, ships,
and drifting surface platforms. AUVs have lower operating
costs than the scientific vessels used for research, and are
easier to deploy and recover than moored platforms. They
also have the advantage of active mobility, so that, unlike
drifting or moored platforms, they can be sent to probe
different locations of interest within the changing ocean
environment. This makes them particularly useful in ocean
monitoring missions that require mobility and long-duration
deployments (see for example [1]). Multiple AUVs may be
deployed together for improved coverage of the survey area
and improved data collection, as in [2], [3]. An overview of
the development of unmanned underwater vehicles is given
in [4].

During extended deployments, using path planning and
navigation algorithms can significantly improve the value
of collected data. In existing literature, there are numer-
ous examples of path-planning algorithms for vehicles in
flow. One possible approach includes dynamic programming
methods, as in [5], which find a globally optimal path.
More commonly, faster heuristic algorithms are used. Garau
et al use an A* algorithm to generate min-time paths for
AUVs in spatially varying, time-static flows [6], [7]. Pêtrès
at al use a Fast Marching (FM)-based algorithm for efficient
path planning in a static flow field [8]; their method is
generalized by Soulignac at al, to strong [9] and time-varying
flows [10]. An alternative approach, not related to dynamic
programming, is to use genetic algorithms, as in [11], or
case-based path planning [12].

All of these path planning algorithms rely on accurate
prediction of the AUV’s trajectory in the given flow field
over time. This is difficult to guarantee in practice, since
the AUVs’ motion is strongly affected by ambient flow.
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Flow velocity can be obtained from ocean general-circulation
models (OGCMs); however, ocean models often include
errors due to missing physics, limited resolution, and errors
in the model forcing terms and boundary conditions. In a
typical setup, a large-scale ocean model is used to drive
the regional model used for flow prediction in a glider
deployment. This results in complex, multi-scale errors in
the driven model, an effect known as the uncertainty cascade
[13], [14]. The error in the Eulerian flow field in turn causes
errors in the predicted AUV trajectories.

Our approach is controlled Lagrangian particle tracking
(CLPT). This is a variation of Lagrangian particle tracking,
a well-established approach in oceanography which is used
to study motions of freely advected particles in ocean flows
[15]–[19]. CLPT models the motions of vehicles with con-
trolled velocity inputs. The vehicle is modeled as a particle
whose velocity is the sum of ambient flow and through-water
velocity. To analyze the error in vehicle position prediction,
we consider a pair of concurrent experiments, in which a
“real” vehicle and its “virtual” counterpart are initialized at a
given position and propagated forward. We then compare the
trajectories of the two vehicles and measure the separation
between them over time. This separation is termed the CLPT
error. In this paper, we expand earlier results in [20], [21],
where we derived bounds on CLPT error growth for particles
operating under perfect flow cancellation with constant flow
modeling error. In this paper, we derive an approximate
formula for growth of error in the predicted position of a
feedback-controlled particle moving in a flow field under
guidance from a flow model, with arbitrary control strategy.
We give an analytical result for error growth in the case
of spatially constant flow with constant model bias. This
simple case serves as an illustrative example of the effect of
ocean modeling error on error in predicted particle positions.
We demonstrate that constant model bias is a significant
factor in the growth of position prediction error by comparing
theoretical predictions of CLPT error growth with the error in
predicted position of underwater gliders in a field deployment
in Long Bay, SC, in winter of 2012.

The rest of this paper is organized as follows: the problem
set-up and general equation for CLPT error growth are
described in section II. In this section we also describe
a particular example of first-order particle dynamics and
a station-keeping controller. The position prediction error
growth in the simple case with constant ambient flow is
derived in section III. Simulation results are shown in section
IV, and concluding remarks are given in section V.



II. PROBLEM SET-UP

Controlled Lagrangian particle tracking is used to model
the motions of vehicles (i.e., controlled particles) with con-
trolled velocity inputs in ocean flow fields. Let x denote the
state of the vehicle, defined over domain D. In general, the
net velocity of the vehicle is a function of the vehicle state,
control input u, and the ambient water velocity F:

dx(t)

dt
= g(x(t),F(x, t), u(x,F, t)). (1)

The functional form of g depends on the internal vehicle
dynamics, the hydrodynamic coupling between vehicle and
ambient flow, and on the ambient flow velocity. Errors can
enter the model in a number of places, causing the modeled
vehicle position to diverge from the true position observed in
the field; we classify them broadly as errors in the modeled
vehicle dynamics (including errors in the modeled coupling
between ambient flow and vehicle motion) and errors in the
modeled flow dynamics. In the case of slow-moving vehicles
moving in complex flow environments with a reasonable
model of the vehicle motion, the error in modeled position
is dominated by the latter error source; that is, error in the
modeled flow conditions. We therefore focus on this error
source in the current work.

To simplify the error computations, we assume a simple
first-order vehicle model as the fiducial model for total
vehicle motion. The net vehicle velocity is given by a
simple sum of the vehicle’s through-water velocity and the
ambient flow. Let x ∈ D denote the state of the vehicle in
configuration space D; let v : D×R→ TD be the through-
water velocity, and let FR : D×R→ TD be the velocity of
the ambeint flow, expressed in state-space coordinates (here
TD denotes the tangent bundle of D):

dx(t)

dt
= v(x, t) + FR(x, t). (2)

The position of the vehicle can be predicted using numerical
integration of (2), with FR, the real flow velocity, replaced by
its modeled value, FM . Let z(t) denote the modeled vehicle
position.

Let es denote the state prediction error, defined as the
offset between true and modeled vehicle states:

es , x− z. (3)

The time evolution of es is described by

ės = FR(x, t) + v(x, t)− FM (z, t)− v(z, t)

= f(x, t) + FM (x, t)− FM (z, t) + v(x, t)− v(z, t)
(4)

where f(ζ, t) , FR(ζ, t)−FM (ζ, t) is the error in modeled
flow velocity. We find a first-order approximation of the error
growth in predicted vehicle position using a Taylor expansion
of the error growth equation about the simulated vehicle
trajectory.

For convenience, let V denote the net velocity of the
vehicle under modeled flow:

V(ζ, t) , FM (ζ, t) + v(ζ, t). (5)

Furthermore, let z(t) denote the simulated vehicle position
at time t, with z(t0) = x(t0). Since z(t) is a known function
of time, we can apply a change of coordinates ζ 7→ ζ − z(t)
and define:

f̄(es, t) , f(z(t) + es, t) (6)

V̄(es, t) , V(z(t) + es, t).. (7)

Then (4) can be written as

ės = f̄(es, t) + V̄(es, t)− V̄(0, t). (8)

Taking the first-order Taylor expansion of (8) about the
simulated vehicle trajectory gives:

ės ≈ DV̄(0, t)es + f̄(es, t) (9)

Equation (9) can be interpreted as a time-varying linear
system with a state-dependent disturbance f̄ . In general, we
can say very little about the behavior of es over time. In this
paper, we consider a special simple case of this equation,
where DV̄ has a simple time variation.

A. Constant-speed particle model

We consider a simple constant-speed kinematic particle
model for the motions of underwater vehicles. The selection
of this model is justified by our field experience with
underwater gliders; these slow-moving autonomous vehicles
behave like particles over sufficiently long time scales (hours-
days).

We choose state variables x = [x1, x2]T ∈ D = R2 and
z = [z1, z2]T ∈ D = R2 represent the horizontal positions
of the real and simulated vehicles, respectively. The constant
though-water vehicle speed is given by s ∈ R+, and is
assumed to be the same for both the real and simulated
vehicles. The real and simulated vehicle positions are given
by

ẋ = sn(u(t,x)) + FR(t,x), (10)
ż = sn(u(t, z)) + FM (t, z), (11)

where n is a unit vector in the direction u, the commanded
heading angle.

B. Station-keeping controller

In this paper, we consider a station-keeping mission, in
which the vehicles’ desired direction of motion is always
toward a fixed goal g. Near the goal position, the vehicle
therefore behaves as a “virtual mooring”. This control algo-
rithm was utilized by our group in the field. Without loss of
generality, we choose the coordinate system so that g = 0.

To perform station-keeping control with guidance from
ocean models, the heading u is chosen to cancel the modeled
flow velocity in the direction normal to the desired motion.
Let T be the unit vector from the vehicle position to the goal
g, and let N be normal to T. For g = 0, T(x) = − x

‖x ‖
and N = Jx

‖x ‖ , where J is the 90◦ rotation matrix. Let v =

sn(u) denote the vehicle through-water velocity. Under the
flow-canceling controller, u is chosen so that net motion is



along T. Assuming ‖FM ‖ < s everywhere (so that flow
cancellation is always possible), this means that:

vTN = −FTMN. (12)

To satisfy (12), we must have u(x) = tan−1 x2

x1
+ π −

sin−1
FTMN
s (see Fig. 1).

Since ‖v ‖2 = s2 = (vTT)2 + (vTN)2 = (vTT)2 +
(FTMN)2, where the last equality follows from (12), and
since we require vTT > 0 (that is, the vehicle moves toward
the goal), the through-water velocity component along T is
given by vTT =

√
s2 − (FTMN)2.

gFM(t,x)

x

FM(t,x)TN

-FM(t,x)TNN
v

T

u

Fig. 1. Schematic of flow-canceling station-keeping controller.

Using the notation defined in (5), under flow-canceling
station-keeping control described in this section, we have:

V(x) =

(
(FTMT)−

√
s2 + (FTMN)2

)
T, (13)

for FM (x)TN(x) ≤ s. We can now derive the error
in position prediction for a specified flow field and flow
modeling error for a vehicle moving with dynamics described
by the constant-speed particle model and controller given by
the station-keeping flow-canceling control. Our goal is to
quantify the forward propagation from error in the ocean
model flow to error in predicted position.

III. ERROR IN THE PREDICTED VEHICLE POSITIONS: A
SIMPLE CASE

In this section we consider position prediction error in a
simple case, where the ambient flow is constant, and satisfies
the condition ‖FM ‖ ≤ s. We consider an underwater vehi-
cle with dynamics are given by the constant-speed kinematic
particle model with flow-canceling station-keeping control.

In this case it is very easy to compute the position of the
simulated vehicle z(t); the vehicle travels in a straight line
to the goal with constant speed FTMT+ [s2 − (FTMN)2]1/2.
Note that since the simulated vehicle travels in a straight
line, T = z(t)

‖ z(t) ‖ and N = JT are constant vectors. For
notational convenience, we define the following constants,
α, β ∈ R:

α =
FTMJT√

s2 − (FTMJT)2
(14)

β = FTMT +
√
s2 − (FTMJT)2. (15)

Note that β is the simulated vehicle’s total speed toward the
origin. We also define the constant matrix

A = (TFTM + αTFTMJ + βI)(I −TTT ). (16)

The following lemma will be used in computing the growth
of position prediction error:

Lemma 3.1: Given A defined by (16), Ai = βi−1A.
Proof: Let M = (I−TTT ). For A defined as in (16),

we have A2 = [TFTMM + αTFTMJM − βM ]2. Expanding
this expression and using the fact that MT = 0 and M2 =
(I −TTT )2 = M gives

A2 = β(TFTM + αTFMJ − βI)M = βA. (17)

Lemma 3.1 follows by applying (17) i times.
The growth of position prediction error in the constant

flow case is summarized in the following proposition:
Proposition 3.1: Given real and simulated vehicles with

dynamics described by (10) and (11), respectively, with flow-
canceling station-keeping control, and constant model flow
FM such that ‖FM ‖ ≤ s, the error in predicted position of
the controlled particle grows as:

es(t) =

(
I − t

‖ z0 ‖
A

)
es(0)

+

(
I − t

‖ z0 ‖
A

)∫ t

0

(
I +

η

‖ z0 ‖ − βη
A

)
f(z, t)dη

(18)

for t ∈ [0, ‖ z0 ‖ /β).
Proof: By (9), the evolution of the error is given to

first order by

ės = DV̄(0)es + f̄(es), (19)

where, (using (13) for V),

DV̄(0) =

(
T(z)FTM −

FTMJT(z)√
s2 − (FTMJT(z))2

T(z)FTMJ

+

(
FTMT(z) +

√
s2 − (FTMJT(z))2

)
I

)
DT(z).

(20)

Using α, β in (20) and the fact that DT(z) = −D z
‖ z ‖ =

− I−T(z)T(z)T

‖ z ‖ , and plugging into (19), we have that the first-
order approximation of the error in predicted vehicle position
increases as

ės =
−(TFTM + αTFTMJ − βI)(I −TTT )

‖ z(t) ‖
es + f

=
−1

‖ z(t) ‖
Aes + f ,

(21)

where A is defined as in (16). We can solve (21) exactly as:

es(t) = e−
∫ t
0

1
‖ z(τ) ‖Adτes(0)

+ e−
∫ t
0

1
‖ z(τ) ‖Adτ

∫ t

0

e
∫ η
0

1
‖ z(τ) ‖Adτ fdη. (22)

Let z(0) = z0 be the initial position of the simulated
vehicle. The vehicle will travel in a straight line toward the
origin with speed β, so that z(t) =

(
1− βt

‖ z0 ‖

)
z0, and

‖ z(t) ‖ = ‖ z0 ‖ − βt for t < β
‖ z0 ‖ . Then

−
∫ t

0

1

‖ z(τ) ‖
Adτ =

1

β
log

(
‖ z0 ‖ − βt
‖ z0 ‖

)
A. (23)



The exponential of this is given by the series definition:

e
1
β log

(
‖ z0 ‖−βt
‖ z0 ‖

)
A

=

∞∑
i=0

(
log ‖ z0 ‖−βt

β‖ z0 ‖

)i
Ai

i!
. (24)

Using Lemma 3.1 and simplifying the algebraic expression
we get:

e−
∫ t
0

1
‖ z(τ) ‖Adτ = e

1
β log

(
‖ z0 ‖−βt
‖ z0 ‖

)
A

= I − t

‖ z0 ‖
A. (25)

Similarly,

e
∫ t
0

1
‖ z(τ) ‖Adτ = I +

t

‖ z0 ‖ − βt
A. (26)

Using (25) and (26) in (22) proves the Proposition.
Assuming that the real and simulated vehicles are initial-

ized to the same position, so that es(0) = 0, we can consider
the growth in position prediction error due to error f in the
ocean model flow prediction. For constant f , corresponding
to a constant model bias, (18) evaluates to:

es(t)=

[
t

(
I − 1

β
A

)
− ‖ z0 ‖ − βt

β2
log
‖ z0 ‖ − βt
‖ z0 ‖

A

]
f .

(27)
It is straightforward to show that the error along the di-
rection of travel, es(t)

TT, is given by tfT − 1/β(t +
‖ z0 ‖−βt

β log ‖ z0 ‖−βt
‖ z0 ‖ )(FM,N − αFM,T)fN, where fT and

fN denote the components of f along T and N, respectively,
and similarly, FM,T and FM,N denote the components of
FM . As there is no feedback control along the vehicle’s
direction of travel, the error growth in this direction is
dominated by the linear term in t. Normal to the direction of
travel, the error es(t)TN is given by −‖ z0 ‖−βt

β log ‖ z0 ‖−βt
‖ z0 ‖ .

This error initially grows as the vehicle is pushed off-course
by the bias flow, and is later reduced as the vehicle steers
toward the station-keeping goal. Thus, in the case of constant
flow and constant model bias, we can find an analytical
simple solution for the linearized error growth for a vehicle
under station-keeping control.

IV. SIMULATION AND EXPERIMENTAL RESULTS

We present several simulations as well as field experiment
data to show that, in the case of spatially uniform bias flow in
the predicted ocean flow field, the theoretical first-order es-
timate position-prediction error gives a good approximation
of error growth in predicted vehicle positions.

The vehicles used are Slocum electric gliders, which
are slow-moving, buoyancy-propelled AUVs, with effective
through-water speed of about 0.24 m/s. The gliders use on-
board waypoint-following algorithms with dead-reckoning
while underwater, and surface periodically (with a period
of 3-4 hours) to communicate with an on-shore controller.
Simulations are run using the Glider Environment Networked
Information System (GENIOS), a Matlab-based software
package for glider simulation and control based on the Glider
Coordinated Control System (GCCS) developed at Princeton
in 2006. GENIOS includes a planning module (gplan) which
generates waypoints to specify glider trajectories as well

as a simulator module (gsim). Gsim uses predicted flow
data from ocean models together with a three-dimensional
glider model, and emulates the glider’s on-board control
algorithms to generate realistic glider trajectories. A more
detailed description of GCCS can be found in [22], [23].

Our field experiment was run in Long Bay, SC, in winter
of 2012. Two gliders were used in the deployment to monitor
ocean conditions over an extended period between January
and April 2012, to study mechanisms that lead to the
formation of persistent wintertime phytoplankton blooms in
this area. Both gliders used the station-keeping controller
described in section II-B; one glider performed a virtual-
mooring mission at the edge of the gulf stream, while the
second glider switched between two station-keeping goal po-
sitions which marked the endpoints of a cross-shore transect,
achieving a transect-following behavior. GENIOS was used
to generate waypoint lists for both gliders; waypoints were
followed using the glider’s on-board proprietary navigation
software. We focus our simulations on the transect-following
glider. In all figures in this section, the blue line next to
the glider trajectories shows the relative position of the
transect. The station-keeping goal is the middle “dot” along
the transect. We ran two simulations, described below.

Simulation I

Two gliders are simulated using gsim with flow-canceling
station-keeping control, under a constant-flow ocean model
with FM = [0.15, 0.03]T m/s. The “real” glider moves in a
field FR = FM + f , where f = [−0.0764 − 0.0083] m/s is
a constant bias flow. We predict the error in glider position
using (27) and compare this with the true offset between
the “real” and “virtual” glider trajectories (see Figure 2).
The theoretical error prediction is based on glider dynamics
described in (10)-(11) and is given by (27). So long as the
vehicle is far from the goal and f is not too strong, the
theoretical prediction of position prediction error based on
the linearization in (9) gives a good approximation of the
true error value. A sample trajectory is shown in Figure 2.
This helps to justify our use of first-order error dynamics in
the simple flow case.

Simulation II

In the second simulation, we use the same set-up as in
Simulation I. This time, however, the flow data FM comes
from a tidal database generated from a series of simula-
tions run by B. Blanton, using the Advanced Circulation
(ADCIRC) ocean model [24]. We use this simulation to
verify that the first-order error model gives a reasonable
approximation of the position prediction error under more
complex flow conditions. In this case, Lemma 3.1 no longer
holds, since matrix A is no longer constant. In this case, we
therefore integrate (9) numerically using Euler’s method to
find theoretical position prediction error values over time.
Figure 3 shows the simulation results. The error computed
using (9) closely matches the true error between the “virtual”
glider simulated with ADCIRC flow only, and the “real”
glider, which operates under an additional bias flow.
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Fig. 2. Subfigure 2(a): trajectories of real and two station-keeping gliders
in constant flow (positions are given in latitude-longitude coordinates; the
glider’s goal position corresponds to a point near Long Bay, SC). Subfigure
2(b): norm of the error in predicted glider trajectory. Solid lines show
observed error, dashed lines show theoretical error prediction.

Field Experiment Results

As in Simulation II, the virtual glider is simulated in
GCCS, with flow data from the ADCIRC tidal database. The
real glider position is obtained from GPS measurements of
glider surfacing positions for the transect-following glider
over a 28-hour time period starting on Mar. 19, 2012 at
1:55 PM. The error f in modeled flow over this period is
shown in Figure 4. It is clear that f does not represent a
constant flow bias in this case. We computed the theoretical
error in predicted position twice, first using constant model
bias f = [−0.0764 − 0.0083] m/s (the mean bias flow
observed over the period of the simulation). Second, to
test the predictive capabilities of the linear error model, we
computed the theoretical error value using a prediction of f
values, obtained from harmonic analysis of the observed flow
error for 7 days prior to Mar. 19th. The dominant harmonic
components in error flow were used to forecast flow error
over the 28-hour period of the simulation. The results are
shown in Fig. 5.

The theoretical error computation based on linearized error
dynamics with forecast f gives a less accurate estimate of
the glider position prediction error than the theoretical error
computed with constant f . The root mean square (RMS)
value of the difference between theoretical and observed
error in predicted glider position is 1.3 · 103 in the case
of forecast f and 7.6 · 102 in the case of constant f . This
reflects the fact that past values of f give a very poor
estimate of future observed values. This result could perhaps
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Fig. 3. Subfigure 3(a): trajectories of real and virtual station-keeping gliders
in tidal flow predicted by ADCIRC (positions are given in latitude-longitude
coordinates; the glider’s goal position corresponds to a point near Long
Bay, SC). The real glider experiences a constant bias flow not captured by
the ADCIRC model. Subfigure 3(b): norm of error in the predicted glider
trajectory. Solid lines show observed error, dashed lines show theoretical
error prediction.
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Fig. 4. Error in ADCIRC prediction of Eastward (squares) and Northward
(stars) depth-averaged flow values over each glider dive period, in m/sec.
Glider on-board depth-averaged flow measurements are used as ground truth.

be improved is a longer history of error flow values were
available. In both cases, there are also contributions to error
in the predicted glider position that are not taken into account
by the linearized error model, including nontrivial glider
dynamics and unknown coupling between flow and glider
motions.

V. CONCLUSION

In this paper, we use a linearization of error dynamics
about the predicted vehicle trajectory to model growth of
error in predicted vehicle position over time, and show,
using simulations, that the linearized error gives a good
approximation of the true position prediction error value for
a station-keeping autonomous vehicle operating far from the
desired station-keeping position. We have applied this result
to compute expected error in the position predicted for a
transect-following glider during a field deployment in Long
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Fig. 5. Subfigure 5(a): trajectories of real and virtual station-keeping gliders
from a field experiment in Long Bay, SC, in winter 2012. The virtual glider
position is simulated using flow from the ADCIRC tidal database. Subfigure
5(b): norm of the error in predicted glider trajectory assuming constant bias
error (dashed line) and predicted periodic error (dotted line) in modeled
flow. Solid lines show observed error at glider surfacing times.

Bay, where the glider was using station-keeping control and
was far from its station-keeping goal.

In our future work, we will extend the approach used in
this paper to estimate error in glider position prediction under
more complex, time-varying flows, and in the case where
the model error in predicted flow is modeled as a stochastic
process. These cases more accurately reflect the conditions
observed in the field; however, analytical results are much
more difficult to obtain. Our goal is to define bounds on the
position prediction error and error growth rate in this case.

ACKNOWLEDGEMENT

The research work is supported by ONR grants N00014-
09-1-1074 and N00014-10-10712 (YIP), and NSF grants
ECCS-0841195 (CAREER), CNS-0931576, and OCE-
1032285. The authors want to thank Dr. Catherine Edwards
of the Skidaway Institute of Oceanography for comments
and discussions regarding glider operations during the Long
Bay experiment.

REFERENCES

[1] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S.
Sukhatme, “Planning and implementing trajectories for autonomous
underwater vehicles to track evolving ocean processes based on
predictions from a regional ocean model,” The International Journal
of Robotics Research, vol. 29, pp. 1475–1497, Aug. 2010.

[2] P. Bhatta, E. Fiorelli, F. Lekien, N. E. Leonard, D. A. Paley, F. Zhang,
R. Bachmayer, D. M. Fratantoni, R. E. Davis, and R. J. Sepulchre,
“Coordination of an underwater glider fleet for adaptive sampling,” in
Proceedings of the International Workshop on Underwater Robotics,
no. August, pp. 61–69, 2005.

[3] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien,
and F. Zhang, “Coordinated control of an underwater glider fleet in an
adaptive ocean sampling field experiment in Monterey Bay,” Journal
of Field Robotics, vol. 27, pp. 718–740, Nov. 2010.

[4] J. Yuh and M. West, “Underwater robotics,” Advanced Robotics,
vol. 15, no. 5, pp. 609–639, 2001.

[5] D. R. Thompson, S. Chien, M. Arrott, A. Balasuriya, Y. Chao, P. P.
Li, M. Meisinger, S. Petillo, and O. Schofield, “Mission planning in
a dynamic ocean Sensorweb,” in ICAPS SPARK, vol. 91109, 2009.

[6] B. Garau, A. Alvarez, and G. Oliver, “Path planning of autonomous
underwater vehicles in current fields with complex spatial variability:
an A* approach,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pp. 194–198, IEEE, 2005.

[7] B. Garau, M. Bonet, A. Alvarez, and S. Ruiz, “Path planning for
autonomous underwater vehicles in realistic oceanic current fields:
application to gliders in the western Mediterranean Sea,” Journal of
Maritime Research, vol. 6, no. 2, pp. 5–22, 2009.
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