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Coherent Steps of Mobile Sensing Agents in Gaussian Scalar Fields

Wencen Wu and Fumin Zhang

Abstract— This paper develops fundamental theoretical re-
sults to describe exploration behaviors of mobile sensing agents
in a noisy scalar field. We introduce concepts of coherent steps
and incoherent steps of the sensing agents and prove that a
step of an agent is coherent if and only if the probability
of a false-walk is less than a threshold determined by the
explorable probability. Among all possible coherent steps,
gradient climbing and level curve tracking are the steps that can
achieve local supremum explorable probabilities. We also prove
that by increasing the number of agents that are collaborating,
the incoherent steps of the collaborating groups can become
coherent. Based on estimates of the noise variance, we propose
an algorithm that estimates the minimum number of agents
required to guarantee coherent steps and implement a strategy
that allows the sensing agents to self-organize into groups
with the estimated minimum number of agents. Results are
demonstrated in multi-robot experiments.

I. INTRODUCTION

An important application for mobile robotics is to de-
ploy mobile robots to explore unknown scalar fields (e.g.,
chemical fields, temperature fields, etc). Various exploration
missions such as gradient climbing/descending [1]-[5] and
level curve tracking [6]-[9] have been investigated in the
literature. Some work focuses on developing exploration
strategies using one agent [10]-[14]. However, due to the
advantages of cooperative exploration over individual explo-
ration in certain aspects such as adaptiveness and efficiency,
recent work has focused on using multiple agents [8], [15]—
[18]. Various algorithms have been developed or extended
to control a group of agents that better perform exploration
tasks.

Our previous work [19] investigates how difficult explor-
ing a field is with a certain amount of agents. We introduce
concepts of local explorable fields and false-walks of sensing
agents, and provide criteria such as the explorable probability
of a location in a scalar field and the probability of a false-
walk of a sensing agent moving in the field. In this paper,
we focus on the behaviors of sensing agents in the explo-
ration of unknown noisy scalar fields based on explorability
analysis. We improve the definition of local explorability,
and introduce notions of coherent steps and incoherent steps
according to the movements of the agents and field values
along the trajectories of the agents. We investigate the
relationships between local explorable fields and coherent
steps of sensing agents, as well as the relationships between
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coherent steps and the probability of false-walks. We prove
that, a step being coherent is the sufficient and necessary
condition for the probability of a false-walk being less
than a threshold determined by the explorable probability.
Therefore, coherent steps guarantee lower probability of a
false-walk compared to incoherent steps. We also show that,
among all coherent steps, gradient climbing/descending and
level curve tracking are two of the steps that can achieve
local supremum explorable probabilities.

Since incoherent steps are associated with higher proba-
bilities of false-walks, we wish to avoid incoherent steps.
One method is to perform cooperative exploration that uses
multiple agents and generates filtered measurements. We
apply the cooperative exploration strategy introduced in [§]
and find that by increasing the number of agents that are
collaborating, the steps of the group of agents can become
coherent, which guarantees a low probability of false-walks.
However, the more collaborating agents, the higher the
communication and computation costs. Therefore, we wish to
minimize the number of agents to guarantee coherent steps.
We design an estimating algorithm to estimate the minimum
number of agents and apply the algorithm to experiments
that include several Khepera III robots deployed in a light
field seeking a light source. When the robots decide that
they need to collaborate, we allow the robots to self-organize
into groups with the estimated minimum number of robots.
This estimation can also be adopted in various problems such
as self-organization, task allocation, and explore vs. exploit
problem when a certain number of agents need to be as-
signed to new tasks. Several studies regarding self-organizing
swarms [20]-[22] develop procedures of organization, while
our results provide an estimate of the number of agents
required to guarantee coherent steps.

The rest of the paper is organized as follows. Section II
introduces the definition of local explorability of a scalar
field and false-walks of sensing agents. Section III proposes
the concepts of coherent steps and incoherent steps, and
investigates the relationships between the coherent steps and
probability of false-walks. Section IV examines cooperative
exploration based on explorability analysis. Section V pro-
poses an algorithm that estimates the minimum number of
agents that are required to guarantee coherent steps and pro-
vides experimental results. Section VI presents concluding
remarks.

II. EXPLORABILITY OF NOISY SCALAR FIELDS

Consider a noisy scalar field ¥ (x) = F(x) + W (x), in which
x € R” denotes a location in the field, F(x) = E(Y(x))
the smooth mean field, and W(x) the noise. In this paper,
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for Y(x) and W(x), we use upper case letters to denote
random variables and lower case letters to denote values
of random variables. E(-) represents expectations. Suppose
xo € R” is a regular point of F(x) that indicates dF (xo) # 0,
e.g., VF(xg) # 0. Define sets U™ (g) = {x|F(x) — F(xo) >
e}.U" (&) = {x|F(x) — F(xo) < —e},U%(e) = {x||F(x) —
F(x0)| <€}, and B(61) = {x| || x—xo ||< &1}, where € >0
and &; > 0 are two constants. We define local explorability
as follows.

Definition 2.1: Given € >0 and 0 < p < 1, field Y (x)
is locally (p,€) explorable at xo (i.e., X¢ is locally (p,€)
explorable) if there exist e+ > € and 0 < £° < g, such that for
V8 > 0 satisfying that (U* (e ") UU~ (e")uU’(e°))NB(§))
has a non-zero Lebesgue measure, the following conditions
are satisfied:

1. If xe U*(e*)NB(81), Pr(Y(x) > Y(x) +€) > —

2. fxe U (e")NB(8)), Pr(Y(x) < Y(xo) —€) > 2.
3. If xe U(e%)NB(8), Pr(|Y (x) — Y (x0)| < &) >

Moreover, Y (x) is (p,€) explorable on an open set C(x), in
which measurements are taken if for every xg € C(x), Y (x) is
locally (p, €) explorable at xo. We refer to p as the explorable
probability and € as the resolution. d is the distance between
positions xp and X.

When exploring a field using mobile sensing agents, we
evaluate the difference in field values through measurements
of the agents. Suppose an agent is discretely taking measure-
ments of field Y (x) while moving in the field. We assume
that each agent takes one measurement at each time instant.
To describe the movement, we first define a step of an agent.

Definition 2.2: A step is a movement performed by a
sensing agent from xo to x in field Y (x) with step size 0,
which satisfies (UT(€)UU™ (g))NB(8) # 0.

At locations x( and x, the agent takes two measurements,
y(xg) and y(x), respectively. Based on the direction of
movement from xg to x, field value F(x) may increase or
decrease, or remain unchanged compared to F'(Xp). However,
due to the noises, the difference between y(x) and y(xo)
may not be consistent with the difference between F(x)
and F(xo). To evaluate the inconsistence, we introduce the
following concept of false-walks [19].

Definition 2.3: A false-walk is a step performed by a
sensing agent such that one of the following conditions is
satisfied:

1. If xe U™ (g), then y(x) < y(xo) + €.

2. If xe U (g), then y(x) > y(x0) — €.

3. If x € U'(¢), then |y(x) —y(xo)| > €.

A false-walk indicates the inconsistence in the measurements
of an agent and the mean field values, which causes inac-
curate extraction of information from the sensor readings.
Thus, in desirable exploration tasks, we want to reduce the
probability of false-walks.

We introduce a proposition regarding the relationships
between false-walks and local explorability. Define the set
Q=U"(e")UU (e")UU’eY). The proposition is as
follows.

Proposition 2.4: Given € >0 and 0 < p < 1, field Y (x)
is locally (p,€) explorable at location xo if and only if

there exist €7 > € and 0 < €° < &, such that for ¥8 > 0
satisfying that QN B(01) has a non-zero Lebesgue measure,
the probability of a false-walk performed by a sensing agent
from X¢ to x € Q with step size 8 satisfies Pr(FW) < 177’7

The proof of the proposition is straightforward from the
definition of the local explorability. The proposition implies
that the explorable probability p is an indictor of the proba-
bility of a false-walk. We consider the explorable probability
as one criterion of evaluating the difficulty of exploring a
field.

III. COHERENT STEPS AND INCOHERENT STEPS

When an agent is moving in field Y(x), we need to
determine which steps can guarantee a low probability of
false-walks. To address this task, we introduce the concepts
of coherent steps and incoherent steps of an agent in this
section and discuss the relationships between those steps and
the probability of false-walks. For sensor measurements and
field noises, we assume that the following assumption holds
for field Y (x) throughout the paper.

Assumption 3.1: Field noise W(x) is independent and
identically distributed (i.i.d.) Gaussian with zero mean and
variance 2.

We assume the measurement noise to be zero-mean Gaus-
sian and consider it together with the field noise. Therefore,
the measurement taken by the agent at #; can be written as

Y(Xk) = F(xx) +w(xe), (1)

in which the noise term w(x;) can be considered as consist-
ing of both field noise and measurement noise.

Suppose a sensing agent is moving in field ¥ (x) = F(x) +
W (x) under Assumption 3.1. The direction of the movement
depends on different tasks such as gradient climbing and
level curve tracking. Based on the movement of the agent,
we define coherent steps of an agent as follows.

Definition 3.2: Given a noisy Gaussian scalar field Y (x) =
F(x)+ W (x) and two constants € >0 and 0 < p < 1, a step
of an agent from x¢ to x with a step size ) is coherent if
one of the following conditions is satisfied.

(1) When xeU ™ (€)NB(8;) or xeU~ (€)NB(d)),

[F(x) = F(xo)| =
o

£ et (p). ?)

(2) When xcU°()NB(8;),

€ — (F(x) — F(xo))
20

€+ (F(x) — F(x0))

f
erf( %0

) +erf(

)>1+p.
3)
Otherwise, the step of the agent is incoherent.

In the definition, erf represents the Gauss error function.
Given the definition, we have the following propositions
regarding the local explorability and coherent steps.

Proposition 3.3: Given € >0 and 0 < p < 1, field Y (x)
with Gaussian noise W(x) is locally (p,€) explorable at
location X if and only if there exist € > € and 0 < €° < g,
such that for Vo) > 0 satisfying that QNB(d)) has a non-zero
Lebesgue measure, any step of the agent from Xo to X € Q
with a step size 0 is coherent.
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Proof: We first prove the necessary condition. Given
two locations Xy and X, the agent measures two random
variables, Y (Xo) and Y (x). We define a new random variable
Z(x) that satisfies Z(x) = W(x) — W(x¢). Then, we obtain
Y (x)—Y(x0) = F(x) — F(X0)+Z(x). Based on the definition
of local explorability, the following cases are discussed.

(1) When xeU™(e")NB(8;), which indicates F(x) —
F(xo) > €T, we calculate Pr(Y (x) > Y (xo) +€) = Pr(Z(x) >
e~ (F(x) — F(xp))) = 1 =[S0 pyag > Lor,
where f(z) is the probability density function (p.d.f.) of the
random variable Z(x). Since we assume that noise W(x)
is ii.d. Gaussian with variance o2 and zero mean, then
Z(x) is also i.i.d. Gaussian with variance 206? and zero
mean. Therefore, we obtain Pr(Y(x) > Y(xp) +€) =1—

L e F)=F(x0)) , =367 g7 = 7( —i—erf(( (x)— Fc(xo)) ) >
e which yields FOIFO0I=E  gerf1(p),

(2) When xeU (e¢")NB(8;), which indicates
F(x) — F(x9) < —¢*, we derive Pr(Y(x) < Y(xo) — €) =
f::*(F(X)*F(Xo))f(Z)dZ = 1(1+erf( —8—(F(;()T—F(Xo)))) > HTP
Then we obtain M > 2erf ! (p). We conclude

from the above two cases that
|F(x) —F(xo)| — ¢
o

> 2erf ! (p), €]

which satisfies Equation (2) in Definition 3.2.

(3) When xeU°e")NB(8;), which indicates
|F(x) — F(xo)| < €7, we obtain Pr(|Y(x) — Y(x¢)| <
&) = SR flede = leri(SEOEO)
erf(M > L Then, we derive

20 2 -
erf(M) + erf(%) > 1+ p, which
satisfies Equation (3) in Definition 3.2. The above
derivations imply that for a field that is locally (p,€)
explorable, if an agent moves from Xq to x with step size
01, which satisfies x € Q, the step is coherent.

For the sufficient condition, since any step from Xg
to x € Q is coherent, then if xeU"(e")NB(8) or
xeU ™ (¢")NB(8;), Equation (2) holds. From Equation (2),
we derive Pr(Y(x) > Y (x) +€) > H” or Pr(Y(x) <Y (x0)—
€)> HT” Similarly, from Equation (3), we derive Pr(|Y (x) —
Y(xo)| <€) > HT” Therefore, Definition 2.1 is satisfied,
indicating that the field is (p,€) explorable. [ |
Proposition 3.3 implies the following two corollaries.

Corollary 3.4: The probability of a false-walk from Xx¢ to
X € Q satisfies Pr(FW) < I_Tp if and only if the step is
coherent.

Corollary 3.5: Given € >0 and 0 < p < 1, a step from Xg
to x € Q with step size 8y is coherent if there exist €t > € and
0 < €% < ¢, such that for V8 > 0 satisfying that QN B(J)
has a non-zero Lebesgue measure, the noise variance G2
satisfies one of the following conditions:

1. If X € U+(8+) NB(8) or xe U~ (et)NB(6), 0 <

et —E .
2erf ' (p
2. Ifxe UO(EO)ﬂB(51) erf(55E )—i—erf(8+8 )>1+p.
Corollary 3.4 suggests that compared to incoherent steps,
coherent steps imply a lower probability of false-walks.

The probability of false-walks decreases as the explorable
probability p increases. Corollary 3.5 implies that as long as
the noise variance satisfies one of the conditions in Corollary
3.5, the probability of a false-walk from x( to x € Q satisfies
Pr(FW) < =2

We have seen from Theorem 3.3 that, for any given field
that is locally (p,€) explorable at x, as long as x € Q, the
step of an agent from Xy to x is coherent. In real-world
applications, the step size or the speed of a robot and the
resolution of a sensor are usually pre-determined and fixed.
Therefore, given any fixed step size &; and resolution €,
we aim at finding the steps that can achieve maximum p.
To examine this problem, we first define gradient climb-
ing/descending and level curve tracking as follows.

Definition 3.6: Given scalar field F(x) and an agent that
moves one step from X to x with step size o7 in the field, if
X—Xg = +0; gi xo)‘, where VF(xg) is the gradient of the
field at locatlon X, the agent is climbing/descending the
gradient. If F(x)— F(x9) = 0, the agent is fracking level
curves.

Based on the definition, we introduce the following propo-
sition.

Proposition 3.7: For an agent that moves one step from
xo to X € Q with step size ) in field Y (X), which is locally
(p,€) explorable at xo, gradient climbing/descending and
level curve tracking are the steps that can obtain local supre-

mum explorable probabilities among all possible directions
X—X|
=0 , o
Proof: Based on the location of x, two situations occur.
(1) When xeUT(e")NB(8) or xeU~(e")NB(6),
|F(x) — F(x0)| > € and Equation (2) should be satisfied.
Since the error function erf(-) is monotonically increasing,
we obtain p < erf(%). Since p can be arbitrarily
|F(x)—F(x0)|—€ |F(x)—F(x0)|—¢
close to erf(—=—5;""—), then, when
increases, the upper bound of p increases as well. Thus,
for any fixed €, when x —X¢ is aligned with the gradient
direction, e.g. in linear case, X — Xg = :|:51 HVF( ;” and
[F(x) = F(x0)| = &1 || VF(xo) [|,
of p as pep = erf(i‘wg(;(’)“*g).
(2) When xcU°(e®)NB(8;), Equation (3) needs to be
satisfied. We derive three special cases from Equation (3).

1) F(x) = F(xo) =

+€0. In thls case, Equation (3) be-
comes erf(£5; 0) +erf(5% ey S 14 p,
2) F(x)—F(x ) 0. In thlS case, Equation (3) becomes
2erf(55) > 14 p.
3) When F(x)— F(xq) goes from —&° to 0 the left 51de
of Equatlon (3) increases from erf( % )+ erf(55 8+€ )
to 2erf(55); and when F(x)— F(xo) goes from 0
to €0, the left side of the Equation (3) decreases
from 2erf(5%) to erf(5; 0)+erf(£+€0). p can also be
arbitrarily close to Zerf( =) — 1. Therefore, the local
supremum of p is pep = 2erf(%) —1.
From the above discusstion, when the moving direction is
aligned with gradient directions or level curves, supremum
explorable probability can be achieved. [ ]
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Note that, incoherent steps occur when an agent moves
one step from x¢ to any location x with step size 8, in field
Y (x) that is not locally (p,é€) explorable at xp, or from x
to x that does not belong to set Q with step size d; in field
Y(x) that is locally (p,€) explorable at xo. From Corollary
3.5, we wish to control the agents to perform coherent steps
to guarantee low probability of false-walks.

IV. COOPERATIVE EXPLORATION IN GAUSSIAN FIELDS

Corollary 3.5 implies that for fixed locations xo and x
and fixed constants p and &, noise variance o2 is the factor
that determines whether a step of an agent is coherent or
not. Since the noise term consists of both field noise and
measurement noise, we investigate cooperative exploration
using multiple sensing agents that the measurement noise
can be filtered by combining measurements from multiple
agents.

Suppose we deploy N mobile sensing agents in field
Y(x). Denote the position of the ith agent at the kth time
step as X;,i = 1,---,N and the measurement taken by the
agent as y(X;r). When the N agents are collaborating, we
assume that they move in a constant formation. In this paper,
formation control is achieved by using Jacobi transform
based method [8], [23], [24], which decouples the dynamics
of the formation from the motion of the center of the
formation. Therefore, separate control laws can be designed
for formation control and motion control. As the agents are
collaborating, we treat them as a group and refer to the group
as a “super-agent”’, whose position is denoted by the center
of the formation that satisfies X, x = %thk.

To obtain filtered measurements from the measurements
of the N collaborating agents, we construct a coopera-
tive Kalman filter, which produces estimated field val-
ues and gradients at the center of the formation. We
choose the state to be sy = (F(Xcx), VF (xcx)7)T, in which
VF(x.x)7T is the gradient at the center of the forma-
1 (Xc‘?k_xc,kfl)r > and h _
0 | 3% e
(0,E[He j—1 (Xck —Xck—1)]7)T, where H,4_; is the estimate
of the Hessian at the center of the formation. Let C; be the

tion. Define A;_| =

N x 3 matrix with its ith row defined by [1,(x;x —Xcx)”]
for i=1,2,...,N and D; the N x 4 matrix with its ith row
vector defined by the Kronecker product %((xi_’k — X k) ®

(Xik —xc7k))T. We define the N x 1 measurement vector
Pt = [y(Xix)] and write down the state equation and the
measurement equation as follows

Sk =Ag_1Sk—1 Hhy_ 1 + vy, )
P = Cisi + DiH, i + Wy, (6)

where v;_; is the 3 x 1 modeling noise vector, which
accounts for positioning errors, estimation errors for the
Hessians, and errors caused by higher-order terms omitted
from the Taylor expansion. w; represents the N x 1 field
noise vector. Suppose the modeling noise is smaller than
the field noise, we make the following assumption for the
properties of w; and vy.

Assumption 4.1: v; and wy are zero mean i.i.d Gaussian
with covariance matrices V;, = E [vkvk] = 07543 and W =
E[wyw!| = 051343, in which o1 < 03.

Based on the state and measurement equations, the co-
operative Kalman filter can be computed. For details about
computing the cooperative Kalman filer, readers can refer
to [8]. If we define the error covariance matrix of the
cooperative Kalman filter at time instant #; as P, then, Py
satisfies Pk’1 = [AWPA] + Vi~ —|—CT -1¢,.

Suppose we control the agents 1n the group to form
a symmetric formation. The distance from each agent
to the center of the formation is a, which means
|| Xix —Xcx [|[= a. As k — oo, Ar goes to I3.3 since
(Xek —Xek—1) — 0. For simplicity, we drop the subscript
o in the following derivations. We calculate that,
as k — o, CTW™IC = Gizzdiag( ,2a’*N,3a’N) holds

[19], [25]. Hence, we obtain P as P = dlag(—%alz—k
4 862

2o+ Fodot 4 Do e+

902 +39) — diag(P(1),P(2),P(3)), where P(I) is

the error covariance of the filtered measurements and P(2)
and P(3) correspond to the error covariance of the field
gradient estimation at the center of the formation. Note
that we use o7 to represent the field noise variance in
cooperative exploration. To evaluate the noise reduction
ability, we need to compare P(1) with 67 by using multiple
agents. We provide the following lemma to address this
comparison.

Lemma 4.2: Consider that N sensing agents move in field
Y(x) in a symmetric formation based on the cooperative
exploration strategy introduced in [8]. Under Assumption
4.1, the error variance of the filtered measurements P(1)
is less than the variance of field noise o, if N > 2.

Proof: According to Assumption 4.1, since 01 < 03, we
write 0] = %62, in which m > 1 is a constant. Substituting G

into P(1) yields P(1) = 5151 /14 503 If we set P(1)<0'22,
then N > o 4 I Since m > 1, which indicates y 4 T < 3,
then as long as N > %, P(1) < 622 holds. Therefore, since
N should be an integer, N > 2 guarantees that cooperative
exploration reduces the field noise. [ ]

The expression of P(1) indicates that as the number of
agents N increases, P(1) decreases. Therefore, by relating
P(1) to 67, we can evaluate the lower bound of the required
number of agents to guarantee coherent steps of the super-
agent. To state the relationships, we propose the following
proposition.

Proposition 4.3: Consider field Y(x) = F(x) + W(x),
where € > 0 and 0 < p <1 are two constants. Under
Assumption 4.1, suppose a super-agent of N collaborating
agents in a symmetric formation moves one step from X
to X. € Q with step size 8 in the field. Assume that the
following conditions are satisfied by the step.

(1) If x,€UT(e)NB(8) or x.€U~(e)NB(81), N satisfies

1603
2( |F(xc)—F (xc0)|—¢ )4

erf ' (p)

N>

)

7
—40y
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(2) If x.€U°(e)NB(8)), N satisfies
erf(ﬂmm( (4) Flxco)y

21+

f( \fm (e+(F )l F(xc0))) )
2+ d)ie
>1+p, (8)

_|_

4;
S

then, the step is coherent.

Proof:  Substituting P(l)% = ﬁ(l + %)%62 for ¢ in
Equations (2) and (3) yields Equations (7) and (8). According
to the definition of coherent steps, if N satisfies Equations
(7) and (8), the step is coherent. |

Based on the Proposition 4.3, if a step of an agent from
location X to X is incoherent, we can increase the number
of agents in the field and let them perform cooperative
exploration. If the number of agents N satisfies Equations
(7) and (8), then the step of the super-agent in cooperative
exploration is coherent, which indicates that the probability
of false-walks of the super-agent can be guaranteed to be less
than 1_71’. However, increasing the number of agents does
not work for all steps. For those steps satisfying F(x.) —
F(xeo) = ) 14,

' (I+x3)40,
which is impossible since erf(-) < 1. In this case, the step is
incoherent regardless of the number of sensing agents N.

+e¢, Equation (8) becomes erf(

V. APPLICATIONS AND EXPERIMENTAL RESULTS
A. Estimating the minimum number of agents

In this section, we design a strategy for estimating the
required minimum number of agents that guarantees coherent
steps in a task of seeking a local minimum of a field.
We allow the agents to self-organize into groups with an
estimated minimum number of agents so that the rest of the
agents can be saved for other exploration tasks.

Suppose we deploy N sensing agents in field ¥ (x). We
assume that there are strategies that allow the sensing agents
to estimate the moving directions in the field so that mea-
surements can be reduced along the trajectories of the agents.

Suppose all the agents move individually in the field while
estimating the field gradients for a certain number of steps.
We provide the following algorithm that the agents can use
to estimate the required minimum number of agents and start
cooperative exploration.

Algorithm 5.1: Given field Y (x) = F(x)+W(x) and € >0
and 0 < p < 1, suppose N agents are deployed in the field.

S.1 From time instant k = 1, the agents individually perfor-
m gradient descending according to any strategy that
reduces sensor readings.

S.2 At k = M, the ith agent estimates the field noise
variance by

1 M
=Y (i) — ©)
1 400 ;

and estimates the number of the agents required to
guarantee coherent steps by

166,
i - 1
len > mz((|51hTVF(Xi,M—1)\*8) )474647 ( 0)
erf " (p) ?

where h = % and VF (x; 1) is the estimated

gradient at x; y_1. Then the ith agent forms a group of
Nmin With the Npin — 1 agents closest to it. The distance
between the ith and jth agents is measured by d; ; =
Xix —Xj|- If N < Npin, all the agents form a group
with N agents.

S.3 From k= M+ 1, the group performs cooperative explo-
ration. A cooperative Kalman filter that is introduced
in Section IV is constructed. The center of the forma-
tion is directed according to X.; = —VF(X.x), where
VF(x.x) is the output of the cooperative Kalman filter.
The remaining agents continue individual exploration.

B. Experimental Results

To study the performance of the self-organizing algorithm,
we deploy five Khepera III robots in a test-bed developed in
our lab. The test-bed consists of a standard 40W incandescent
light bulb that generates a light field, an overhead localization
system programmed in LabView, and a central computer.
Each Khepera III robot measures the light intensity using the
infrared sensors around it and seeks the light source in the
light field. For details of the experimental settings, readers
can refer to [26].

In the experiments, all the robots start from moving in
the field individually. In the first trial, we set p = 0.9,
€ =50, and m = 1.5, and choose a step size of 6, = 5cm
for the robots. Following Algorithm 5.1, at step k = 8§,
robot “G” first requires collaboration. For the robots to
decide whether they need collaboration, we use the switching
conditions introduced in our paper [26]. Robot “G” estimates
0'22 and Np;, according to Equations (9) and (10) and obtains
0y = 341.0085 and Ny, > 2.8429. Therefore, Ny, = 3.
The closest two robots to Robot “G”, robots “O” and “N”,
together with Robot “G” form a symmetric formation and
converge to the light source. Since the estimation results
indicate that three robots are enough to guarantee coherent
steps with a probability of 90% in the field, the left two
robots perform individual exploration all the time. We can
also assign other tasks to the remaining two robots. Fig. 1
(left) shows the trajectories of the five robots. If we increase
the desired explorable probability p to 0.91, the estimated
minimum number becomes Ny, = 4. The trajectories of the
four robots are illustrated in Fig. 1 (right). Fig. 2 shows the
measurements collected by the agents in these two cases.
The blue line with triangles are the filtered field values at
the center of the formation, and the vertical dark blue lines
indicate the time step, at which switching occurs.

Fig. 1.
(right).

Trajectories of five Khepera III robots. Npin = 3 (left), and Npi, =4
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Fig. 2. Measurements of five Khepera III robots in the first (Nyin = 3) and
second (Npin = 4) experiment.

As we discussed in Section IV, as the number of agents
N increases, the error in the cooperative Kalman filter
decreases, as shown in Fig. 3, in which the blue, green, and
red lines correspond to the traces of the error covariance
matrix of the cooperative Kalman filter when three, four,
and five robots are in a group, respectively.

trace( Pk)
T T —_—
——Thrse robot group
014+ Four robot group
042 —— Five robot group

( \

0 | i | |
5 2
Step (k)

Fig. 3. Traces of the cooperative Kalman filter when three, four, and five
robots are performing cooperative exploration.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we examine the behaviors of sensing agents
in the exploration of unknown noisy scalar fields. We propose
notions of coherent steps and incoherent steps of sensing
agents and show that a step of an agent being coherent is
the sufficient and necessary condition for the probability of a
false-walk being less than a certain threshold. We apply the
cooperative exploration strategy and prove that as the number
of collaborating agents increases, the steps of the agent group
become coherent. We provide an algorithm that estimates the
minimum required number of agents that guarantee coherent
steps and implement the algorithm in experiments. Future
work includes applying the explorability analysis in non-
Gaussian fields and implementing the proposed algorithm
in real-world applications.
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