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Abstract— We introduce a dynamic battery model that de-
scribes the variations of the capacity of a battery under
time varying discharge current. This model is input-output
equivalent to the Rakhmatov-Vrudhula-Wallach (RVW) model
that has been verified by experimental data. Our model allows
battery capacity prediction for feedback control laws and online
scheduling algorithms that are building blocks for Cyber-
Physical Systems (CPS) theory. We design optimal and adaptive
discharge profile for a square wave impulsive current to achieve
maximum battery life. Simulation results are provided to
compare battery life for different discharge profiles.

I. INTRODUCTION

Technology advancement in battery design has played
an important role in the economic development during the
last two decades. Consumer electronics, mobile computing
devices, and personal communication devices have become
smaller but with longer operation time. Battery innovation
also finds its way into the research community in areas
such as robotics, mobile sensor networks, and embedded
computers where most hardware platforms are powered
by batteries. Until now, the majority of batteries used are
electro-chemical batteries. Such batteries are complex chem-
ical/physical systems by themselves and possess interesting
“nonlinear” discharge behaviors [1]–[3].

A recent trend in cyber-physical systems research is the
co-design of different controlling mechanisms to balance
performance in both physical systems and computing sys-
tems [4]–[8]. The results of such co-design are often hy-
brid feedback control laws and scheduling algorithms that
draw impulsive current from the batteries. Approaches for
power management have been proposed, with the method of
dynamic voltage scaling (DVS) among the most important
ones. Reference [9] proposes one of the first DVS-aware
scheduling algorithms, [10] analyzes DVS scheduling with
discrete voltages, [11] develops heuristic schedulers that take
advantage of program profile information, [12] introduces
procrastination scheduling, and [13] manage power for sen-
sor networks. In these works the behaviors of batteries are
simplified as ideal voltage sources whose life only depends
on the average discharge current.

According to battery and VLSI design literature e.g.
[1], [2], the battery discharge current is supported by the
change of concentration of electrolytes near the anode or the
cathode of a battery. The chemical processes of oxidation
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and reduction reduce the concentration of electrolytes near
the electrodes and create a spatial gradient of concentration
within the battery. Driven by the concentration gradient,
electrolytes diffuse to the electrodes from other areas of
the battery. When the concentration at the electrodes drops
below a certain threshold, a battery fails to provide dis-
charge current, causing failure to devices it supports. At
this moment, the discharge cycle has to stop and the battery
needs to be recharged or replaced. Note that there may be
a significant amount of active electrolytes left in the battery
when a discharge cycle ends. Therefore, the actual capacity
of a battery is significantly lower than the theoretical capacity
that is the total amount of electrolytes contained in a battery.
When the battery is discharged under a pulsed discharge
current, during the idle time when current is interrupted,
the diffusion process increases electrolyte concentration at
the electrodes. This produces the recovery effect that makes
the battery appears to have regained portions of its capacity.
The amount of capacity recovered depends on the amount of
active electrolyte available.

Battery modeling aims to simulate these behaviors by
computational models [2]. To support theoretical cyber-
physical systems design, a class of analytical models are
desired. This is because comparing to physical [14], empir-
ical [15], and circuit based [16] models, analytical models
are theoretically tractable while providing sufficient accuracy.
Authors of [1] model battery behaviors as a stochastic system
based on random walks on a finite state machine. Authors
of [17] model the nonlinear relationship between battery
capacity and averaged discharge current. The Rakhmatov-
Vrudhula-Wallach (RVW) model proposed in [3] is an an-
alytical model that is derived from solving the diffusion
equations governing the electrolytes motion within a battery.
The model captures the recovery effect effectively. It has
been shown to agree with experimental results and has
demonstrated high accuracy in battery capacity prediction
and battery life estimation. However, the application of the
RVW model requires that the discharge current, as a function
of time, is known. This is because the RVW model is
typically used at the circuit design stage to evaluate design
options on battery discharge.

A dynamic model needs to be established that is able
to predict battery capacity based on the discharge current
determined by a feedback control law or feedback scheduling
algorithm. The magnitude and pulse width of such discharge
current can not be determined beforehand. In this paper, we
establish a battery model that captures the recovery effect
and supports the co-design of battery management with con-



troller and scheduling algorithms. Our model is input-output
equivalent to the RVW model. Based on this model, optimal
and adaptive discharge profiles for square wave discharge
current is determined. We show that the problem is not more
challenging than studying linear systems under impulsive or
switching control. Although such systems are mostly well-
understood theoretically in the control community [18]–[20],
our effort connects these known results on systems behavior
with battery behaviors, which is a novel contribution.

The paper is organized as follows. We review the electro-
chemical battery discharge mechanisms and the RVW model
in section II. In section III, we derive the dynamic battery
model. The model behavior under a square wave impulsive
discharge current is discussed in section IV. The optimal
impulsive and adaptive discharge profile is computed in sec-
tion VI. In section VII, we compare battery life for different
battery discharge profiles via simulation. Conclusions are
provided in section VII.

II. BATTERY MECHANISM AND THE RVW MODEL

This section reviews the relevant properties of electro-
chemical battery cells and the RVW model. We summarizes
the discussions in [1]–[3] and the references therein.

A. The Electrochemical Process

An electrochemical battery has a cathode and an anode that
are connected by electrolyte inside the battery shell. During
discharge, the gain of electrons at the cathode (oxidation)
is coupled with the loss of electrons at the anode (re-
duction). The electrochemical reactions, involving electrons
v−1,oxidized species O, and reduced species R, can be
described as follows:

cathode:O + v− → R

anode:R− v− → O.

To simplify the discussion, let us suppose that a battery is
symmetric and the two electrodes behave in similar ways.
This allows us to consider only species O and the cathode.

Initially, the concentration of species O is uniformly
distributed inside a battery. During the discharge period, the
species O at the cathode accepts electrons from external
circuit and forms species R. This causes reduction of O near
the cathode, which generates a concentration gradient of O
across the battery. Due to this gradient, the species O that
is further away from the cathode diffuses to the cathode.
The diffusion tends to increase the concentration of O at
the cathode. Under constant discharge current, eventually,
the diffusion and the consumption reach a balance at the
cathode, and the overall concentration of O at the cathode
keeps dropping. Once the concentration falls below a certain
level, the battery fails to support the outside circuit.

If load is switched off before the battery fails, the cathode
fails to draw electrons from the external circuit and thus
the transformation at the cathode (from species O to species
R) stops. However, the concentration gradient inside the
battery still exists and the diffusion will continue until
the concentration gradient disappears. Now species O will

become uniformly distributed at a level lower than the initial
concentration. Hence, given the same averaged current, the
amount of charge delivered under the impulsive current is
larger than the amount of charge delivered under the constant
current.

B. The RVW Model

Rakhmatov, Vrudhula, and Wallach studied a one-
dimensional diffusion equation that describes the concentra-
tion of electrolytes inside a battery:

J(x, t) = −D∂C(x, t)
∂x

∂C (x, t)
∂t

= D
∂2C (x, t)
∂x2

(1)

where C(x, t) stands for the concentration of electrolyte
at time t at the distance x from the electrode, J(x, t)
denotes the flux of electrolyte and D is the constant diffusion
coefficient. Suppose the length of the battery is 2w. Then the
boundary condition for (1) can be derived as,

1) x = 0: according to Faraday’s law, the flux of elec-
trolyte J(0, t) at the electrode is proportional to the
current i(t) supplied by the battery.

−J(0, t)νAF = i(t)

where F stands for the Faraday Constant, A stands for
the cross section of the electrode, and ν is a scaling
factor. One can derive the first boundary condition as

D
∂C (x, t)
∂x

|x=0 =
i (t)
νFA

. (2)

2) x = w: the concentration gradient at the center of
the battery is zero. Thus, one can derive the second
boundary condition as

D
∂C (x, t)
∂x

|x=w = 0. (3)

To solve (1), the Laplace transform method is applied.
Since the electrolyte is uniformly distributed when discharge
started, C (x, 0) is a constant and can be denoted by C?. The
solution for the concentration of electrolyte at the electrode
is

C (0, t) = C? − i (t)
νwFA

∗

(
1 + 2

∞∑
m=1

e−
π2m2

w2 Dt

)
(4)

where ∗ stands for the convolution. Define ρ(t) as

ρ(t) =1− C(0, t)
C?

=
i(t)

C?νwFA
∗

(
1 + 2

∞∑
m=1

e−
π2m2

w2 Dt

) (5)

At the starting time t = 0, C(0, 0) = C? and ρ(0) = 0. As
the discharge continues, C(0, t) gradually decreases and ρ(t)
increases. Finally at the dead time t = L, C(0, L) drops to
the cutoff level Ccutoff while ρ(t) reaches the corresponding
threshold ρcutoff =

(
1− Ccutoff

C?

)
. Note that both ρcutoff and

Ccutoff are constants determined by the physical property of
a given battery.



III. A DYNAMIC DISCHARGE MODEL

The RVW model relates the concentration at the electrode
with the discharge current i(t). But the relationship is static
in the sense that the current i(t) must be known for the
entire discharge cycle. We present a state space dynamic
model that produces the same input-output relationship as
the RVW model.

Let λm = π2D
w2 m

2 and α = C?νwFAρcutoff . Then (5)
becomes

ρ(t) =
i(t)ρcutoff

α
∗

(
1 + 2

∞∑
m=1

e−λmt

)
To normalize ρ(t), we define y(t) as

y(t) =
ρ(t)
ρcutoff

=
i(t)
α
∗

(
1 + 2

∞∑
m=1

e−λmt

)
(6)

which implies that y(0) = 0 at the initial time t = 0 and
y(L) = 1 at the failure time t = L.

To derive the state space model, we first replace m =∞
with m = M in (6) and obtain

y (t) =
i (t)
α
∗ 1 +

i (t)
α
∗ 2

M∑
m=1

e−λmt

=
[
1 1 · · · 1

]


i(t)
α ∗ 1

2i(t)
α ∗ e−λ1t

...
2i(t)
α ∗ e−λM t


(7)

Next, we define the state variables to be x(t) =
[x0(t), ..., xM (t)]T . The elements of x satisfy, ẋ0 (t) = 1

α i(t)
ẋm (t) = −λmxm(t) + 2

α i(t) m ∈ {1, 2, · · · ,M}
xm(0) = 0 m ∈ {0, 1, · · · ,M}

The solutions of the above equations are,

x0(t) =
∫ t

0

1
α
i(τ)dτ =

i(t)
α
∗ 1

xm(t) =
∫ t

0

e−λm(t−τ) 2
α
i(τ)dτ

=
2i(t)
α
∗ e−λmt

(8)

We substitute (8) into (7) to get,

y(t) = [1, 1, ..., 1]


x0(t)
x1(t)
· · ·

xM (t)

 = [1, 1, ..., 1]x(t) (9)

To this point, we have established the dynamic battery
discharge model as

ẋ(t) = Ax(t) + bi(t)
y(t) = cx(t) (10)

where

A = diag [0,−λ1, · · · ,−λM ](M+1)×(M+1)

b =


1
α
2
α
· · ·
2
α


(M+1)×1

c = [1, 1, · · · , 1]1×(M+1) .

In addition, we have shown that this model is input-output
equivalent to the RVW model when M →∞.

IV. IMPULSIVE DISCHARGE CURRENT

The co-design for cyber-physical systems should take
advantage of the recovery effect to improve the battery
efficiency. To achieve this goal, we are interested in studying
different discharge profiles. In this paper, we focus on the
periodic impulsive current i(t), which can be expressed as{

i(t) = u nT ≤ t ≤ nT +Q
i(t) = 0 nT +Q ≤ t ≤ nT + T

where u is a constant. It can be seen that the shape of i(t)
depends on three parameters: the pulse current u, the duty
ratio R = T

Q and the length of the discharge-recovery period
T .

The problem is now formulated as studying a linear system
under impulsive control. We will connect the known results
for system behaviors with battery discharge behaviors.

A. Role of Internal States

Before discussing the optimal R and T that minimize y(t),
we will study the role of internal states under the impulsive
discharge. Equation (10) shows that y(t) is the sum of all
internal states xm(t). We divide the y(t) into two parts,

y(t) = x0(t) + x
′
(t).

where

x
′
(t) =

M∑
m=1

xm(t). (11)

The state x0(t) is just the integration of the discharge
current, hence reflects the ”effective” charge drawn from the
battery. We let t = NT + t̂ where N represents the number
of discharge-recovery periods for the discharge current and
t̂ ∈ [0, T ]. Using linear systems theory, it is straightforward
to show that

1) During the discharging time i.e. t̂ ∈ [0, Q],

x0(t) =
u

α
(NQ+ t̂). (12)

2) During the resting time i.e. t̂ ∈ [Q,T ],

x0(t) =
u

α
(NQ+Q). (13)

We can study x
′
(t) by investigating the property of each

internal state xm(t). Again, a direct application of linear sys-
tems theory shows that at the time t = NT + t̂,

(
t̂ ∈ [0, T ]

)
,

xm(t) =
∫ NT+t̂

0

e−λm(NT+t̂−τ)i(τ)
2
α
dτ (14)

and the results are



1) During the discharging time i.e. t̂ ∈ [0, Q]

xm(NT + t̂) =
2u
αλm

− e−λm t̂ 2u
αλm

(eλmT − eλmQ) + e−λmNT (eλmQ − 1)
eλmT − 1

.

(15)
2) During the resting period i.e. t̂ ∈ [Q,T ]

xm(NT + t̂)

= e−λm t̂
2u
αλm

(eλmQ − 1)
(

1− e−λmNT

eλmT − 1
+ 1
)
.

(16)
It is also known that within the period of [NT,NT + T ],

xm(t) increases monotonically during the discharging time
and decreases monotonically during the resting time. Hence
xm(t) oscillates in each period. The average of xm(t) within
[NT,NT + T ] can be computed by

Om(t) =

∫ NT+T

NT
xm(t)dt
T

=
2uR
αλm

− 2u
αλ2

mT

(
eλmQ − 1

)
e−λm(N+1)T .

(17)

B. The Switching Steady State

The model approaches a switching steady state when
NT → ∞ and e−λmNT → 0. At this steady state, since
Q = RT , we have,

xm(NT + t̂)st

=
2u
αλm

− e−λm t̂ 2u
αλm

(eλmT − eλmRT )
eλmT − 1

t̂ ∈ [0, Q],
(18)

xm(NT + t̂)st

= e−λm t̂
2u
αλm

(eλmRT − 1)
(

1
eλmT − 1

+ 1
)

t̂ ∈ [Q,T ],

(19)

Om(t)st =
2uR
αλm

. (20)

We use Sm to denote the time for Om(t) to reach a fixed
neighborhood around the steady state value. Sm depends
only on λm. Since λm is a physical parameter of the battery,
the transient time Sm is fixed for a given battery. Since x

′
(t)

is the sum of xm(t), the transient time for x
′
(t) is defined

by S = max {S1, S2, · · · , SM}, which is also determined
by the battery.

V. OPTIMAL AND ADAPTIVE DISCHARGE PROFILES

The x
′
(t) in the state space model represents the wasted

electrolytes that can not be drawn by the outside current.
Thus to maximize battery efficiency, we need to minimize
x

′
(t). From the above analysis, we know that x

′
(t) will go

through a fixed transient time S to approach the steady state.
However, the larger the averaged current is, the shorter the
battery lifetime L is. In certain situations, the battery may
fail even before x

′
(t) reaches the steady state, i.e. S > L.

For example, the two plots in Fig. 1 are simulated under the
same battery model α = 40375 λm = (0.273)2m2. and the
same discharging profile R = 0.5, T = 4min . The impulse

current in the left plot has u1 = 222.7mA while the impulse
current in the right plot has u2 = 1000mA. The battery
lifetime L is the time when y(t) reaches 1. In the left plot,
we see that L > S and the x

′
(t) can reach the steady state

before time L. In the right plot, L < S and the battery fails
before x

′
(t) getting close to the steady state.

Fig. 1. Two possibilities for battery discharge. The total discharge output
y(t), the effective discharge x0(t), and the wasted discharge x

′
(t) are

plotted in both plots. L is the time when y(t) = 1 and S is the time when
x

′
(t) is near the steady state. The discharge current for the left plot is

smaller than the right plot. Left, S < L; right, S > L.

We assume that the level u of the discharge current is
fixed. We focus on the case where x

′
(t) approaches the

steady state before the failure of battery, i.e. S < L. At
the steady state, x

′
(NT + t̂)st is periodic.

A. Optimal Discharge Profiles

In this section, we determine the optimal R and T that
minimize the steady state x

′
(t) at times NT and NT +

Q. As we discussed in the previous section, x(NT )st is
the minimum during one period and x(NT + Q)st is the
maximum during one period. We first determine the optimal
duty R given that T is fixed. Then we determine the optimal
period T given the optimal duty Ropt.

Given fixed period T , (18) and (19) are all monotonic
increasing with respect to R > 0. Thus, decreasing R will
decrease the xm(t)st for all t. The same property holds for
x

′
(t)st. The optimal duty cycle is the minimum possible

value for R determined by other practical constraints.
Next, we determine the optimal T given R = Ropt fixed.

Regarding the average state Om(t), we have

Om(t)st =
2uRopt

αλm
. (21)

Apparently, Om(t)st is fixed by Ropt and not affected by
T . Hence xm(t)st will oscillate around the same level as T
changes. The same property holds for x

′
(t)st.

Our conclusion is that the larger T is, the more impulsive
x

′
(t)st is. The justification to the conclusion is as follows.

First, consider the minimum value for xm during one period,
according to (18), we have

xm(NT )st =
2u
αλm

eλmRoptT − 1
eλmT − 1

, (22)

which can now be viewed as a function of T . Taking
the derivative of xm(NT )st with respect to T and after



simplification, we have

dxm(NT )st

dT
=

2u
α

eλmT

(eλmT − 1)2
×(

1−Ropte
λmRoptT−λmT − (1−Ropt)eλmRoptT

)
.

(23)

Define H(T ) to be

H(T ) = 1−Ropte
λm(Ropt−1)T−(1−Ropt)eλmRoptT . (24)

Then, one can verify that

H(0) = 0
dH(T )
dT

< 0

which implies that H(T ) < 0 for all T > 0. Moreover, plug
(24) back into (23),

dxm(NT )st

dT
=

2u
α

eλmT

(eλmT − 1)2
H(T ). (25)

We must have that
dxm(NT )st

dT
< 0 if T > 0,

which means that the function xm(NT )st is monotone
decreasing whenever T > 0. The longer the period T ,
the smaller xm(NT )st is. The same property holds for
x

′
(NT )st.
Now consider xm(NT+Q)st, the maximum value for xm

during one discharge-recovery period. According to equation
(19), we have

xm(NT +Q)st =
2u
αλm

(1− e−λmRoptT )
eλmT

eλmT − 1
. (26)

By similar arguments made for xm(NT )st, we can show
that

dxm(NT +Q)st

dT
> 0 if T > 0,

which means that the function xm(NT +Q)st is monotone
increasing whenever T > 0. The longer the period T ,
the larger xm(NT + Q)st is. The same property holds for
x

′
(NT +Q)st.
Thus, the following proposition has been proved.
Proposition 1: Consider the dynamic battery model under

a square wave impulsive discharge current. In the steady
state, the average state Om(t)st is determined by (21), which
does not depend on the discharge-recovery period T . For the
internal state xm(t)st where m = 1, 2, ...,M , the difference
between its maximum and its minimum during one period T
increases monotonically as T increases.

B. An Adaptive Discharge Strategy

In this section, we design an adaptive discharge strategy
that improves the battery efficiency as follows

1) Select the minimum R and keep it fixed during the
lifetime of the battery.

2) Use large T initially, then switch to smaller T when
approaching the end of battery life.

We will determine what the switching time and the adaptive
period should be.

For simplicity, we only discuss a two-step adaptive strat-
egy, in which the period is only changed once. Similar
arguments can be made for multi-step strategies. Suppose
the initial discharge profile is selected as T1, R and the
lifetime of a battery under this discharge can be written as
L1 = N1T1+t̂1. We assume that S < L. We have Q1 = RT1

and
y(L1) = x0(L1)st + x

′
(L1)st = 1. (27)

During a discharge-recovery period, y(t) first increases and
then decreases. Therefore,{

y((N1 − 1)T1 +Q1) < 1
y(N1T1 +Q1) > 1. (28)

Substitute (12) and (18) into (28), we have{
N1 +

∑M
m=1

2
λmQ1

(1− e−λmQ1) eλmT1

eλmT1−1
< α

uQ1

N1 + 1 +
∑M
m=1

2
λmQ1

(1− e−λmQ1) eλmT1

eλmT1−1
> α

uQ1
.

(29)
Solve the above equations,

N1 =

⌊
α

uQ1
−

M∑
m=1

2
λmQ1

(1− e−λmQ1)
eλmT1

eλmT1 − 1

⌋
.

(30)
The time to switch to a different period is then N1T1.

We now determine the new discharge-recovery period T2.
Applying (12) and (18) into (27), we have

t̂1 − e−λm t̂1
M∑
m=1

2
λm

eλmT1 − eλmQ1

eλmT1 − 1
+

M∑
m=1

2
λm

+N1Q1 −
α

u
= 0.

Define the left side of the above equation to be f(t̂1), one
can verify that

f(0) < 0
df(t̂1)
dt̂1

> 0.

Therefore there exists unique t̂1 satisfying the equation

f(t̂1) = 0.

The new period is then T2 = t̂1
R .

A new time t̂2 can then be calculated based on R and T2

and the battery life will be prolonged by t̂2. The battery life
can be further prolonged by allowing multiple switching to
shorter discharge-recovery periods.

VI. SIMULATION RESULTS

We compare simulation results for a battery with the
following parameters:

I = 50mA α = 40375 λm = (0.273)2m2

under different discharge profiles.
The influence of the duty ratio R and the time period T is

shown in Fig. 2. In the left plot, the time period is fixed to be
T = 20 minutes. We can see that the smaller the duty ratio
R, the smaller x

′
(t) is, i.e. the less unavailable species and

thus the more efficient the battery is. In the right plot, the



duty ratio is fixed to be R = 0.5. It indicates that the larger
the time period T , the more impulsive x

′
(t) is, i.e. the less

unavailable species in the battery at the end of each period
but more overshoot during the period. These are consistent
with our analysis.

Fig. 2. Battery capacity under different duty ratios and time periods

In Fig.3, we show the battery efficiency improved by
adaptive strategy. The physical parameter of the battery is

I = 300mA α = 40375 λm = (0.273)2m2.

Initially, we choose T1 = 8 minutes, R = 0.5. We compute
the value N1 = 26 and t̂1 = 3.3. Then, at the time N1T1 =
208, we switch to another discharge profile T2 = t̂1

R1
. We can

see that the online running time of the battery is prolonged
by the adaptive strategy.

Fig. 3. Adaptive Strategy prolongs battery life

VII. CONCLUSIONS

We introduce a dynamic battery discharge model that
is input-output equivalent to the RVW model. Since the
accuracy of RVW model has been verified by experimental
data, it is reasonable to conclude that the dynamic battery
discharge model inherits such accuracy. The states of this
model represent the instantaneous discharge/recovery effects
within the battery. Using this dynamic model, the battery
can be viewed as a linear system under the control i(t).
Optimal and adaptive i(t) can be determined analytically
without seeking numerical methods. The battery model and
discharge strategy will be applied to mobile sensor networks
[21]–[23] where battery aware control laws and scheduling
strategies increases operation time.
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