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Abstract— We develop a robust plume tracking strategy
using mobile sensor networks in three dimensional (3D) fields.
Inspired by the plume tracking behavior of blue crabs, we
propose a stochastic model of plume spikes detected by sensing
agents based on the Poisson counting process, which enables
us to transform the turbulent plume field detected by sensing
agents to a continuously-differential field, the minimum of
which is considered as a source in the field, and shares the
same location with the plume source. The transformation allows
us to design and analyze source-seeking algorithms in smooth
fields instead of in turbulent fields with higher fluctuation
spatially and temporally. Inspired by fish schools that seek
darker (shaded) regions in environments with complex lighting
variations, we develop a distributed source-seeking algorithm
using mobile sensor networks without explicit gradient esti-
mation. The velocity of each agent is designed using only the
measurements taken by the agent and the relative positions to
its neighboring agents. We prove that, using this design, the
moving direction of a three-agent group will converge to the
opposite gradient direction of the field, thus, the group moves
towards a source in the field. We also prove that the tracking
system is input-to-state stable (ISS), indicating that the system
is robust to disturbances. We then generalize the design to N-
agent groups, and demonstrate the strategy in both smooth
fields and turbulent fields in simulations.

I. INTRODUCTION

Exploration tasks that require mobile sensing agents to
localize and identify a feature of interest (source) in scalar
fields such as chemical and temperature fields are of great
concern to researchers and are important in many scenarios.
For example, locating the position of oil spills and identifying
the origin of a wild fire. To detect and track a source in
a scalar field, various algorithms have been proposed in
the literature. For example, references [1]–[5] introduced
collective gradient estimating and tracking algorithms using
multiple sensing agents, and references [6]–[10] present
source-seeking algorithms using a single robot. Most of the
work focus on two-dimensional (2D) fields, few of them
extends the results to three-dimensional (3D) fields [11].
Reference [5] introduces a source-seeking algorithm using a
group of mobile sensing agents in a distributed fashion with
no explicit gradient estimation in a 2D field. The algorithm
is inspired by fish schools that are able to perform gradient
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tracking to locate darker (shaded) regions in complex light
environments even if the field is time-varying [12].

To locate sources in fluid flow environments, one may
not expect a well-behaved scalar field. When the Reynolds
number are low, gradients may be well-defined. However,
At medium to high Reynolds numbers, chemical or particle
dispersion is dominated by turbulent mixing, which produces
scalar fields that fluctuate rapidly in spatial and temporal
scales [13]–[15]. The source seeking problem in such fields
is more challenging due to the lack of analytical methods
that describe the “plume-like” distribution. Gradient-based
methods developed for smooth scalar field can not be directly
applied. Various algorithms are developed and inspired by the
extraordinary capability of plume tracking by moths, blue
crabs, and bees [16]–[22]. Most of them apply to single
agent.

A stochastic model has been developed in [23] such that
plume spikes detected by sensing agents can be estimated
based on the Poisson counting process, which enables the
transformation of a turbulent plume field to a continuously-
differentiable field, the minimum of which is considered as
a source in the field, and shares the same location with
the plume source. The field transformation is inspired by
behaviors of blue crabs and the sensor-mediated plume
tracking algorithm in a controlled turbulent flow environment
developed by Webster et al. [19]. Then, the source seeking
strategy developed in [5] has been utilized by mobile sensing
agents, which are able to locate the plume source in a
turbulent field.

In this paper, we extend the distributed source-seeking
strategy in [5] to 3D, and demonstrate that the source-seeking
in smooth fields and the plume tracking in turbulent fields
can be unified in 3D by performing a field transformation
similar to [23]. After a turbulent field is transformed to a
smooth field, we design source-seeking strategy to control
the velocities of the agents and analysis the convergence of
the strategy in a smooth field. We decompose the velocity
of each agent into three parts along each direction of a
right-handed coordinate frame determined by a three-agent
group. The three-agent group is controlled to remain a
constant formation so that they are considered as a rigid
body. Under the assumption that the agents do not share
measurements with other agents, the forward speed of each
agent is designed to be proportional to the field values.
In other words, the agents speed up when the field values
increase, and slow down when the field values decrease.
With the help of differential geometry, we prove that the
moving direction of the center of the group will converge to
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the opposite direction of the gradient, thus, moving towards
a local minimum (source) of the field, and the system is
input-to-state stable (ISS). The convergence of the formation
control laws is proved using shape variables as described in
[24]–[26].

The contributions of this work are (1) by extending the
results in [23] from 2D to 3D, we transform a turbulent
field into a continuously-differentiable field, which is more
amenable to analysis; (2) we introduce a distributed plume
tracking strategy in 3D turbulent fields using mobile sensor
networks that requires no communication among agents; and
(2) by proving the input-to-state stability of the tracking
system, we are able to show that the plume tracking strategy
is robust to bounded disturbances.

The rest of the paper is organized as follows. Section II
introduces the problem formulation and the field transforma-
tion. Section III presents source-seeking control law design
for three-agent groups in 3D, the convergence proof, the
generalization to N-agent groups, and the simulation results
in smooth fields. Section IV introduces plume tracking strat-
egy in turbulent fields and illustrates the simulation results.
Section V provides concluding remarks and future work.

II. PROBLEM FORMULATION

Let z(r),r ∈ R3 represent a scaler field, in which every
location of the field associates with a scalar value such
as temperature, light intensity, or chemical concentration.
Consider a group of N sensing agents moving in the field
and taking measurements of the field along their trajectories.
The measurements are denoted by y(ri) = z(ri)+ v(ri), i =
1, · · · ,N, in which v(ri) is the noise term that may come from
measuring process or the field. Let ri represent the position
and vi the velocity of the ith agent. Suppose the motion
of each agent in the group satisfies ṙi = vi, i = 1, · · · ,N.
Denote the position and velocity of the group center as rc
and vc, respectively. Then, we derive rc = 1

N ∑
N
i=1 ri, and

vc =
1
N ∑

N
i=1 vi.

We assume the agents can sense their relative positions
to neighboring agents using sensors such as sonar, radar,
and camera, but they do not share measurements with other
agents. If z(r) is generated by a turbulent field with a
chemical plume source, as illustrated in Fig. 1, the goal is to
control the group of mobile sensing agents to detect and track
the plume source from initial locations that are downstream
to the plume source.

In [23], an approach that transforms a turbulent flow
field detected by agents into a smooth field sharing the
same source has been proposed. Suppose the transformed
smooth field is at least class C1 with minimum zmin and
maximum zmax, in which zmin≥ 0, then the plume tracking in
a turbulent field is converted to the source-seeking problem
in a transformed smooth field. The local minimum zmin ≥
0 is considered as a source of the field. In this section,
we introduce the transformation of the field in 3D, which
motivates our development of source-seeking strategy in
smooth fields.

Fig. 1. A turbulent plume field in 2D. Adapted from [19].
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Fig. 2. Concentration measured along the trajectory of a moving
sensor in a turbulent chemical plume. Adapted from [19].

A. Modeling Plume Spikes

Based on the experimental data in [19], [27], we notice
that when a mobile sensor moves in a plume at constant
speed, the measurement of concentration along its trajectory
will display spike-like structure as shown in Fig. 2. A spike
can then be detected by comparing the measurement with a
given threshold. The occurrences of spikes can be modeled
as a Poisson process. Another important observation is that
as the sensor gets closer to the plume source, the average
frequency of the spike occurrence becomes lower, but the
duration of each spike becomes longer.

Based on the knowledge of spikes in [19], we introduce
a stochastic model that describes the random occurrences
of spikes along the trajectory of an agent. We define the
spike indicator s = {s1,s2}, where s1,s2 ∈ Z, that identifies
the status of spike detected by a sensing agent: s = s1
indicates no spike at the current position of the agent, and
s = s2 indicates otherwise. The spike indicator s satisfies the
following stochastic differential equation driven by Poisson
counters:

ds = (s1− s)dN12 +(s2− s)dN21, (1)

where dN12, dN21 are Poisson jump processes that trigger
the state s to jump from s1 to s2 and from s2 back to s1,
respectively. Along the trajectory, a state jump from s1 to s2
indicates the beginning of a spike and a jump from s2 to s1
indicates the ending of a spike.

The state transitions of the spike indicator happen ran-
domly, and the rates λ12 and λ21, which are associated with
the jump processes dN12 and dN21, determine how frequently
state transitions happen. In other words, the rates affect the
duration of a spike as well as the expected frequency of the
spike occurrences. Based on the observation from [19], λ12
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and λ21 can be modeled as follows. For the ith sensing agent
in a field, let λ12,i and λ21,i be the rates of the Poisson jump
process. Suppose the chemical source is located at position
r0. Let the distance between the agent and the source be
‖ri − r0‖. Then, we assume that λ12,i is a monotonically
increasing function of the the distance and λ21,i is inverse
proportional to the distance, e.g.,

λ12,i = kλ

1
g(‖ri− r0‖)

,

λ21,i = k′
λ

g(‖ri− r0‖),
(2)

in which kλ and k′
λ

are positive constants chosen by design.
g(‖ri−r0‖) 6= 0 is assumed to be a monotonically increasing
function of ‖ri− r0‖.

Equation (1) in association with the rates λ12,i, λ21,i in
Equation (2) for the jump processes model the timing of
spikes in a turbulent field. Define a function

f (ri) =
λ12,i +λ21,i

λ12,i
=

k′
λ

kλ

g(‖ri− r0‖)2 +1, (3)

which is a smooth function of distance ‖ri−r0‖. One simple
example for g(‖ri− r0‖) is g(‖ri− r0‖) = ‖ri− r0‖. Then,
since the source is located at r0, where the function f (ri) has
a unique minimum value 1, the problem of finding the plume
source in the turbulent field is now equivalent to finding the
minimum point in the smooth field f (r).

III. SOURCE-SEEKING IN SMOOTH FIELDS

In this section, we first introduce the control law design
for a three-agent group seeking for a source in a smooth
field, and prove the convergence of the moving direction of
the group with the opposite direction of the gradient of the
field. We then generalize the design to N-agent groups and
present simulation results.

A. Control Law Design for Three-agent Groups

Suppose the positions of the three agents ri, i = 1,2,3, are
not in a line, which indicates that the three agents determines
a plane M. Define a right-handed coordinate frame (q,q⊥,n)
with the origin locating at rc and q and q⊥ lying on the plane
M. n is determined by q×q⊥, which is normal to the plane.

For each agent, we decompose the velocity into three parts
along the directions of q,q⊥, and n, and denote them as vi,q,
vi,q⊥ , and vi,n, i = 1,2,3, respectively. Fig. 3 illustrates the
geometry of the three-agent group in 3D space. In the figure,
(X,Y,Z) is the inertial frame, and N = ∇ f (rc)

‖∇ f (rc‖ indicates the
gradient direction of the field f (r) at location rc. Given the
decomposition, we obtain the velocity of the ith agent as

vi = vi,q +vi,q⊥ +vi,n = vi,qq+ vi,q⊥q⊥+ vi,nn, (4)

where vi,q,vi,q⊥ , and vi,n are speed along directions q,q⊥,
and n, respectively. Note that this decomposition decouples
the normal component of the velocity vi,n from the tangential
components vi,q and vi,q⊥ , which allows us to analyze the
stability of the normal and tangential modes separately.

We aim to control the agents to maintain a constant
formation in plane M and move towards the minimum of

Fig. 3. The geometry of a three-agent group in inertial frame.

Fig. 4. The projections of ri onto q (a) and q⊥ (b).

the field f (r), which locates at r0. For now, we assume that
the rates λ12 and λ21 are available to the agents along their
trajectories so that the field f (r) can be measured. We will
discuss the estimation of the rates λ12 and λ21 in Section
IV. Inspired by behaviors of fish schools [12], we design the
speed in the normal direction n to be proportional to the field
value f (ri) as

vi,n = k f (ri)+C, (5)

in which k > 0 and C are constants.
For the tangential components of the velocity, let r′i be

the projection of ri onto vector q, and r′′i be the projection
of ri onto vector q⊥, as illustrated in Fig. 4 (a) and (b),
respectively. For agent i, we define sets Ni and N⊥i that
contain the indices of the neighboring agents along directions
q and q⊥. For example, for the three-agent group as shown
in Fig. 4, N1 = {3}, N2 = {3}, N3 = {1,2}, N⊥1 = {2,3},
N⊥2 = {1,3}, N⊥3 = {1,2}. The goal is to design vi,q and vi,q⊥
so that the relative distance from r′i to r′j, i 6= j, converges to
a constant a0

i j, and the relative distance from r′′i to r′′j , i 6= j,
converges to a constant b0

i j. Therefore, we design

vi,q = k1 ∑
j∈Ni

((r j− ri) ·q−a0
j,i), (6)

vi,q⊥ = k2 ∑
j∈N⊥i

((r j− ri) ·q⊥−b0
j,i), (7)

where k1 > 0 and k2 > 0 are constants, a0
i, j =−a0

j,i, and b0
i, j =

−b0
j,i.
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B. Convergence Proof

Given the controllers in Equations (5), (6), and (7), we first
prove that the positions of the agents converge to a constant
formation in plane M.

To prove the convergence under control (6), we define
shape variables s1 = (r3− r1) ·q and s2 = (r2− r3) ·q. We
derive that

ṡ1 = v3,q− v1,q = k1(−2(s1−a0
3,1)+(s2−a0

2,3)),

ṡ2 = v2,q− v3,q = k1((s1−a0
3,1)−2(s2−a0

2,3)). (8)

Define s = (s1,s2)
T and a0 = (a0

3,1,a
0
2,3)

T , then, we obtain

ṡ = k1A(s−a0), (9)

where A =

(
−2 1
1 −2

)
. Since the eigenvalues of A are

−1 and −3, the state s of the system (9) will converge
to the equilibrium a0 asymptotically. In other words, the
relative distances among agents in direction q will converge
to constants determined by a0. Define b0 = (b0

3,1,b
0
2,3)

T .
Similar methods can be applied to prove the convergence
of the relative distances among agents in direction q⊥ to
b0 under control (7). Then, the agents will converge to a
constant formation in plane M.

The constant formation can be treated as a rigid body,
therefore, the frame (q,q⊥,n) is considered as the body
frame of the rigid body. We now prove that the moving
direction of the rigid body converges to the opposite gradient
direction at rc.

In the inertial frame, once the formation converges, vi,q =
vi,q⊥ = 0. Then, the velocity of position ri in the rigid body
becomes vi = vi,nn, and the velocity of the formation center
is vc =

1
3 ∑

3
i=1 vi,nn = vc,nn, which indicates that the moving

direction of the rigid body coincides with the n axis of
the body frame. In other words, the tangent vector of the
trajectory of the rigid body aligns with n. Define shape
variables N ·n, N ·q, and N ·q⊥, where N = ∇ f (rc)

‖∇ f (rc)‖ [24],
[28]. Note that the shape variables satisfy the relationship

(N ·q⊥)2 = 1− (N ·q)2− (N ·n)2. (10)

We aim to prove that as time t→ ∞, N ·n converges to −1.
Since we have d(N·n)

dt = N · ṅ+ Ṅ ·n, the first step is to find
ṅ.

In frame (q,q⊥,n), we can write any vector v as

v = (q ·v)q+(q⊥ ·v)q⊥+(n ·v)n. (11)

To find ṅ, we apply Equation (11) with v = ṅ, and calculate
the coefficients (q · ṅ), (q⊥ · ṅ), and (n · ṅ). In the inertial
frame, define the rotation matrix of the rigid body as g =
[q,q⊥,n]∈ SO(3). Define a skew symmetric matrix S(ω), in
which ω ∈ R3 is the angular velocity of the rigid body. Then,
we have ġ = S(ω)g, which suggests that ṅ = ω ×n. Since
the speed of ri along directions q and q⊥ are zero for the
rigid body, we conclude that ω is confined in plane M.

For the velocity of the agent in the inertial frame, vi−vc
satisfies

vi−vc = ω× (ri− rc). (12)

Then, we have

(vi,n− vc,n)n = ω× (ri− rc). (13)

By taking inner product with n on both sides of Equation
(13), we obtain

vi,n− vc,n = ω× (ri− rc) ·n. (14)

Define ωi = ω× (ri− rc) ·n. We have

ωi =−(ri− rc) · (ω×n) =−(ri− rc) · ṅ. (15)

For simplicity, we constrain the three agents to form an
equilateral triangle, which means that ‖ r1 − r2 ‖=‖ r2 −
r3 ‖=‖ r3− r1 ‖. In this case, q and q⊥ can be chosen as

r2−r1
‖r2−r1‖

and r3−rc
‖r3−rc‖ , respectively. We derive

ω3 =− ‖ r3− rc ‖
r3− rc

‖ r3− rc ‖
· ṅ =− ‖ r3− rc ‖ (q⊥ · ṅ),

(16)
and

ω2−ω1 =− ‖ r2−r1 ‖
r2− r1

‖ r2− r1 ‖
· ṅ =− ‖ r2−r1 ‖ (q · ṅ),

(17)
which produces q⊥ · ṅ = − ω3

‖r3−rc‖ and q · ṅ = − ω2−ω1
‖r2−r1‖

. In
addition, since n is a unit vector, we have n · ṅ = 0. Thus, ṅ
has the form

ṅ =− ω2−ω1

‖ r2− r1 ‖
q− ω3

‖ r3− rc ‖
q⊥. (18)

From Equation (14), we have ωi = vi,n− vc,n. Since the
field f (r) is at least class C1, then, from the Taylor expan-
sion, we have

vi,n = k( f (rc)+∇ f (rc) · (ri− rc))+C+H.O.T, (19)

where H.O.T represents higher order terms. In addition,

vc,n =
k
3

3

∑
i=1

vi,n =
1
3

3

∑
i=1

f (ri)+C

= k f (rc)+
k
3

∇ f (rc) · (
3

∑
i=1

ri−3rc)+C = k f (rc)+C. (20)

Therefore, if the higher order terms are insignificant com-
pared to the first and second order term in Equation (19),
we derive

ωi = vi,n− vc,n = k∇ f (rc) · (ri− rc)

= k ‖ ∇ f (rc) ‖ (
∇ f (rc)

‖ ∇ f (rc) ‖
· (ri− rc))

= k ‖ ∇ f (rc) ‖ (N · (ri− rc)), (21)

which leads to

ω2−ω1 = k ‖ ∇ f (rc) ‖ (N · (r2− r1))

= k ‖ ∇ f (rc) ‖‖ r2− r1 ‖ (N ·
r2− r1

‖ r2− r1 ‖
)

= k ‖ ∇ f (rc) ‖‖ r2− r1 ‖ (N ·q), (22)
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and

ω3 = k ‖ ∇ f (rc) ‖‖ r3− rc ‖ (N ·
r3− rc

‖ r3− rc ‖
)

= k ‖ ∇ f (rc) ‖‖ r3− rc ‖ (N ·q⊥). (23)

Substitute Equations (22) and (23) into Equation (18), we
obtain ṅ =−k ‖∇ f (rc) ‖ ((N ·q)q+(N ·q⊥)q⊥). Therefore,
using (10), the closed-loop system is derived as

d(N ·n)
dt

=−k ‖ ∇ f (rc) ‖ (1− (N ·n)2)+ Ṅ ·n, (24)

in which ∇ f (rc) is time-varying as rc changes.
For simplicity, denote θ = N · n and δ = Ṅ · n. Since N

and n are unit vectors, we have −1 ≤ θ ≤ 1. System (24)
can be rewritten as

θ̇ =−k ‖ ∇ f (rc) ‖ (1−θ
2)+δ . (25)

Let h(t,θ ,δ ),−k ‖∇ f (rc) ‖ (1−θ 2)+δ . If ‖∇ f (rc) ‖6=
0, the unforced system h(t,θ ,0) has two equilibriums θ = 1
and θ =−1. We will prove that if we set θ(t)< 0 at t = 0,
θ(t) will always be less than zero as t → ∞. We have the
following proposition.

Proposition 3.1: Consider the time-varying system (25).
Assume ‖ ∇ f (r) ‖ is bounded below along the trajectory of
the formation center. That is, ‖∇ f (r) ‖≥ εc, in which εc > 0
is a constant. If at t = 0, we set θ(0) =N ·n< 0, then, as t→
∞, the equilibrium θ =−1 of the unforced system h(t,θ ,0)
is asymptotically stable for all initial conditions satisfying
−1≤ θ(0)< 0. Furthermore, for all initial conditions −1≤
θ(0) < 0 and |δ | < kεεc, in which 0 < ε < 1 is a constant,
the system (25) is input-to-state stable on the interval θ ∈
[−1,0).

Proof: Define a new variable β = θ +1, then, 0≤ β ≤
2. System (25) becomes

β̇ = k ‖ ∇ f (rc) ‖ (β 2−2β )+δ . (26)

β = 0 and β = 2 are two equilibriums of the unforced system
h(t,β ,0), which correspond to N ·n=−1 and 1, respectively.
Since Ṅ is perpendicular to N, we have Ṅ · n = 0 when
N · n = −1 or 1. Therefore, δ = 0 when β = 0 or β = 2,
which implies that β remains in [0,2] even though there is
perturbation δ .

To prove the input-to-state stability of the equilibrium β =
0, we define a Lyapunov candidate function on the interval
0≤ β ≤ 2 as

V (β ) =
1
2

β
2. (27)

We have V (0) = 0, and V (β )> 0 for 0 < β ≤ 2. We derive

V̇ (β ) = β̇β =−k ‖ ∇ f (rc) ‖ (2−β )β 2 +βδ . (28)

When β = 1, from the assumptions ‖∇ f (r) ‖≥ εc and |δ |<
kεεc, Equation (28) becomes

V̇ (1) =−k ‖ ∇ f (rc) ‖+δ <−kεc + kεεc < 0. (29)

Therefore, if at t = 0, we set 0 ≤ β (0) < 1, then, since
V (β (t)) is a monotonic function of β on the interval 0≤ β <
1 and bounded below by zero, the trajectory of the system

will stay in a compact sub-level set of the Lyapunov function,
implying 0≤ β (t)< 1 for all t > 0. Thus, we are interested
in the case when 0 ≤ β < 1. If 0 ≤ β < 1 for all t, then,
β −2≤−β . We derive

V̇ (β ) =−k ‖ ∇ f (rc) ‖ (2−β )β 2 +βδ ,

≤−k ‖ ∇ f (rc) ‖ β
3 +βδ

=−(1− ε)k ‖ ∇ f (rc) ‖ β
3− εk ‖ ∇ f (rc) ‖ β

3 +βδ

≤−(1− ε)k ‖ ∇ f (rc) ‖ β
3, ∀ ‖ β ‖≥

√
|δ |

kεεc
(30)

The assumption |δ | < kεεc implies that
√
|δ |

kεεc
< 1, which

guarantees the set β ∈ [
√
|δ |

kεεc
,1) is not empty.

Denote α1(|β |) = α2(|β |) = 1
2 |β |

2, which are class K
functions when 0 ≤ |β | < 1. We have α1(|β |) ≤ V (β ) ≤
α2(|β |). In addition, W3(β ) = (1− ε)k ‖ ∇ f (rc) ‖ β 3 is a
continuous positive definite function on 0 ≤ β < 1, and
ρ(|δ |) =

√
|δ |

kεεc
is a class K function. Therefore, we have

V̇ (β )≤−W3(β ),∀ρ(|δ |)≤ |β |< 1. Thus, according to The-
orem 4.19 in [29], the system (25) is input-to-state stable over
the interval 0 ≤ β < 1. The input-to-state stability implies
that the equilibrium β = 0 of the unforced system h(t,β ,0)
is asymptotically stable with initial conditions starting from
all points in [0,1). In other words, θ(t) converges to −1
asymptotically as t > ∞.

Proposition 3.1 indicates that, without perturbation δ , as
t→∞, the moving direction of the rigid body will converge
to be aligned with the opposite direction of the gradient of the
field, thus, the rigid body moves towards a local minimum
of the field. If the perturbation δ is bounded, the system is
input-to-state stable. Hence, the moving direction of the rigid
body will stay close to the opposite direction of the gradient
if the perturbation δ is small.

C. Generalization to N-agent Groups

In [5], the design for controlling N-agent groups was
generalized from the two-agent case in 2D. In 3D, we can
also generalize the results to N-agent groups. Instead of
choosing a reference vector as in 2D case, we choose three
agents from the N-agent group that determine a reference
plane M and define a right-handed coordinate frame [q,q⊥,n]
in the same way as in the three-agent case. Then, we
decompose the velocity of each agent along directions of
q,q⊥, and n. Equation (4) holds for the all the agents in the
N-agent group.

Unlike the three-agent group that remains a constant
formation, the N-agent group is only controlled to maintain
constant distances among agents along directions q and q⊥.
As illustrated in Fig. 5, we denote the three agents that
determines plane M as r1,r2, and r3, and project all the
other agents onto plane M. Notice that agents r1, r2, and r3
will be controlled to form an equilateral triangle. The black
dots illustrate the positions of each agent, and the grey dots
show the projections of agent m,n,k, and l onto plane M. The
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Fig. 5. Geometry of a N-agent group. Projections of the agents
rk,rl ,rm, and rn onto the plane determined by r1, r2, and r3 are
rp,k,rp,l ,rp,m, and rp,n.

Fig. 6. Projections of rp,l onto axis q and q⊥ are r′p,l and r′′p,l .

projected positions are denoted by rp,i, i = 1, · · · ,N. Notice
that rp,1 = r1, rp,2 = r2, and rp,3 = r3.

Similar to the three-agent case, we project rp,i, i= 1, · · · ,N
onto q and q⊥, and denote the projected positions as r′p,i and
r′′p,i, respectively. In Fig. 6, we demonstrate the projections
of agent rp,l onto q and q⊥. For agent i, we also define sets
Ni and N⊥i that contain the indices of the neighboring agents
along directions q and q⊥. For example, as shown in Fig.
6, N1 = {m,3}, Nk = {2, l}, N⊥3 = {m, l}, and N⊥2 = {k,1, l}.
Then, we design

vi,q = k1 ∑
j∈Ni

((rp, j− rp,i) ·q−a0
j,i), (31)

vi,q⊥ = k2 ∑
j∈N⊥i

((rp, j− rp,i) ·q⊥−b0
j,i), (32)

where k1 > 0 and k2 > 0 are constants, a0
i, j =−a0

j,i, and b0
i, j =

−b0
j,i are desired distances between r′p,i and r′p, j, and r′′p,i

and r′′p, j, respectively. Using similar methods as in the three-
agent case, we can prove that the relative distance from r′p,i
to r′p, j, i 6= j, converges to a constant a0

i j, and the relative
distance from r′′p,i to r′′p, j, i 6= j, converges to a constant b0

i j.
Along direction n, we still use Equation (5) as the control

for each sensing agent. Notice that, under this design, the
distance between two agents i and j along direction n is
determined by f (ri)− f (r j), which may not be a constant.
Therefore, the N-agent group can not be controlled as a rigid
body in 3D. However, as we discussed, the projections of
the agents onto plane M can be controlled to maintain a
constant formation, which can be considered as a rigid body.

Therefore, the convergence proof in the three-agent case can
still be applied. Following similar arguments, we can prove
that the moving direction of the plane determined by agents
r1, r2, and r3 will be aligned with the opposite direction of
the gradient of field f (r).

D. Simulation Results in Smooth fields

To demonstrate our source-seeking strategy, we simulate
three sensing agents moving in a smooth field f (r) = rT r
under the control laws (5), (6), and (7), in which we
choose k = 1, C = 0, and k1 = k2 = 1. The field has a
minimum located at r = (0,0,0). The initial positions of
the agents are r1 = [0.9,0.8,0.8], r2 = [0.8,0.9,0.8], and
r3 = [0.85,0.85,0.85]. The desired distances among agents
are a0

31 =−a0
23 = 0.05 and b0

31 = b0
32 = 0.1

√
3

2 . As illustrated
in Fig. 7, the three agents (red, green, and blue dots) converge
to a constant formation, and move towards the minimum of
the field. The moving direction of the center of the formation
converges to the opposite direction of gradient directions.
The black dots indicates the trajectory of the formation
center.

Fig. 7. Simulation results of three agents locating a local minimum
of a smooth field.

IV. PLUME TRACKING IN TURBULENT FLOW

In the control (5), the field value f (r) needs to be esti-
mated at every step by the agents based on the measurements
of the turbulent field. In this section, we present an approach
that estimates the rates λ12 and λ21 so that the smooth field
f (r) can be generated along the trajectories of each agent,
then, we apply the source-seeking strategy in the smooth
field f (r) to control the agents in a turbulent field to track
a plume source.

A. Plume Tracking Algorithm

Along its trajectory, a sensing agent takes measurements
of a turbulent field, then compares the measurements with a
given threshold to determine if there is a spike. A measure-
ment being greater than the threshold indicates that a spike is
detected. Suppose the current time is t and the j-th spike has
been detected along the trajectory of the ith agent. Denote
Tj,i and T ′j,i as the beginning and ending time of the j-th
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spike, respectively. Then, the rate of state transitions can be
estimated by

λ̂12,i(t) =
1

Tj,i−T ′j−1,i
, λ̂21,i(t) =

1
T ′j,i−Tj,i

. (33)

Considering the noise or imperfect design of the sensor,
λ̂12,i(t) and λ̂21,i(t) in Equation (33) represent noisy esti-
mates of the rates. Using the estimates λ̂12,i(t) and λ̂21,i(t),
the mobile agent can compute a noisy estimate of f (ri) as

f̂ (ri) =
λ̂12,i + λ̂21,i

λ̂12,i
= f (ri)+w(ri), (34)

in which w(ri) represents the error term that may be induced
by estimation error or measurement noise. Therefore, Equa-
tion (5) becomes

vi,n = k f̂ (ri)+C. (35)

The derivation and convergence proof in Section III assumes
no noise in field value f (ri). However, with the presence of
the noise w(ri), uncertainties in the moving direction arise.
We have analyzed the situation when noise is present in 2D
case [5]. The extension to 3D case will be analyzed in our
future work.

Consider the implementation in practise. We discretize the
system and use the designed velocities (6), (7), and (35) as
path planning algorithm for the agent group. Let us denote
by ri,k = ri(tk) the position of the ith agent at time tk and by
h the time step size. Then, the agents will seek the plume
source based on the following path-planning algorithm:

Algorithm 4.1: Repeat the following steps for i = 1,2,3.
At location ri,k, the ith sensing agent

1) takes measurements of the turbulent field values at each
time step for a finite time T called the “waiting time”.

2) estimates λ̂12,i and λ̂21,i based on the measurements,
estimates f̂ (ri) based on Equation (34), and determines
the velocity vi,k based on Equations (6), (7), and (35),
which generates a planned trajectory.

3) moves forward along the trajectory over a finite motion
horizon time τ so that ri,k+1 = ri,k +

τ

h vi,k.
4) stops if either the mean of f̂ (ri) estimated by the agents

is sufficiently close to 1, indicating the vicinity of the
source, or the distance of the formation center from
the source is 1

N ∑
N
i=1 ‖ ri−r0 ‖≤ ε , where ε = 5 cm in

the simulation; otherwise, repeat from step 1.

B. Simulation Results in Turbulent Flow

We now simulate the plume tracking algorithm 4.1 in a
3D simulated turbulent flow field using three sensing agents.
Choose kλ = frdr and k′

λ
= fr

dr
, in which the reference

frequency fr = 4 Hz and reference distance dr = 150 cm.
These parameters determine the jump rates λ12, λ21 for
spikes in the simulation, which agree with our previous work
[23]. Then, at each location in the plume field, a time series
of spikes is generated using Equation (1). Each sensing agent
measures this series of spikes at its current position for
the waiting time T as described in Algorithm 4.1, then it
estimates the field f (r).
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Fig. 8. The trajectory of the center of three mobile sensing agents in
a plume tracking simulation in 3D. The plume source is located at
(0,0,0) and the agents are deployed at (150,55,−30), (150,5,−30),
and (150,30,−30 + 25

√
3). The waiting time T = 50 s at each

position and the agents move forward for τ = 1 s after the velocities
are determined.

According to Algorithm 4.1, we simulate three mobile
sensing agents in the simulated turbulent fluid field using
control laws (6), (7), and (35). For the controller parameters,
we set k = 3, C =−3, and k1 = k2 = 1. The initial positions
of the simulated agents are r0

1 = (150,30+ a0
13,−30), r0

2 =
(150,30+ a0

23,−30), and r0
3 = (150,30,−30+ b0

13), where
a0

13 = −a0
23 = 25 cm and b0

13 = b0
23 = 25

√
3 cm. The agents

estimate the averaged plume field for the waiting time T at
their current position, then move forward for τ = 1 s. Each
agent neither needs the entire field information nor shares
their information with other agents to navigate. Instead,
they use the spike parameters λ̂12, λ̂21 only at their current
positions to compute f̂ (ri) and vi in the algorithm, which
takes very small computational cost and hence enables real-
time implementation.

Simulation results are illustrated in Figs. 8 and 9. After
estimating λ̂12,i and λ̂21,i using Equation (33), each agent
computes the velocity and moves forward. Fig. 8 shows the
trajectory (the green line) of the center of the three agents
towards the source. The ending positions of each of the
three agents are marked by purple square, circle, and triangle
markers, respectively. The relative displacements between
the agents are plotted as the black lines connecting the
ending positions of the three agents. We see that the relative
distances between the agents are maintained till the end. In
Fig. 9, we can observe that the center of the agents smoothly
converges to the source on both x-y and x-z planes.

V. CONCLUSIONS

In this paper, we develop a distributed source-seeking
algorithm using mobile sensor networks in 3D fields without
explicit gradient estimation. The velocity of each agent is
designed using only the measurements taken by the agent
and the relative positions to the neighboring agents. We prove
that, without perturbation, the moving direction of the agent
group will converge to the opposite direction of the field
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Fig. 9. Top-view (x-y plane) and side-view (x-z plane) trajectory
images of the plume tracking simulation in Fig. 8. The center of
three mobile sensing agents is smoothly converging to the plume
source using Algorithm 4.1 with T = 50 s and τ = 1 s.

gradient, and the system is input-to-state stable when the
perturbation is small. The strategy is applied to mobile sensor
networks in turbulent fields tracking a plume source. The
application of the algorithm is enabled by the transformation
of a turbulent field detected by sensing agents to a smoother
field sharing the same source as the turbulent field. Future
work includes analysing the control strategy with the pres-
ence of noise in the measurements, and verifying the plume
tracking algorithm using real experimental data.
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